8000 GitHub - fastestimator/fastestimator at r1.6
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

fastestimator/fastestimator

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastEstimator

License Build Status Codacy Badge Codacy Badge PyPI version PyPI stable Download PyPI stable Download

FastEstimator is a high-level deep learning library built on TensorFlow2 and PyTorch. With the help of FastEstimator, you can easily build a high-performance deep learning model and run it anywhere. 😉

For more information, please visit our website.

Support Matrix

FastEstimator Python TensorFlow PyTorch CUDA Installation Instruction
Nightly 3.8-3.10 2.11.1 2.0.1 11.8 master branch
1.6 (recent stable) 3.8-3.10 2.11.1 2.0.1 11.8 r1.6 branch
1.5 3.7-3.9 2.9.1 1.10.2 11.0 r1.5 branch
1.4 3.6-3.8 2.4.1 1.7.1 11.0 r1.4 branch
1.3 3.6-3.8 2.4.1 1.7.1 11.0 r1.3 branch
1.2 3.6-3.8 2.4.1 1.7.1 11.0 r1.2 branch
1.1 3.6-3.8 2.3.0 1.6.0 10.1 r1.1 branch

Installation

1. Install Dependencies

  • Install TensorFlow

  • Install PyTorch

    • CPU:

      pip install torch==2.0.1+cpu torchvision==0.15.2+cpu torchaudio==2.0.2+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
    • GPU:

      pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2+cu118 -f https://download.pytorch.org/whl/cu118/torch_stable.html
  • Extra Dependencies:

    • Windows:

      • Install Build Tools for Visual Studio 2019 here.

      • Install latest Visual C++ redistributable here and choose x86 for 32 bit OS, x64 for 64 bit OS.

    • Linux:

      apt-get install libglib2.0-0 libsm6 libxrender1 libxext6
    • Mac:

2. Install FastEstimator

  • Stable:

    pip install fastestimator
  • Nightly (Linux/Mac):

    pip install fastestimator-nightly

Docker Hub

Docker containers create isolated virtual environments that share resources with a host machine. Docker provides an easy way to set up a FastEstimator environment. You can simply pull our image from Docker Hub and get started:

  • Stable:

    • GPU:

      docker pull fastestimator/fastestimator:latest-gpu
    • CPU:

      docker pull fastestimator/fastestimator:latest-cpu
  • Nighly:

    • GPU:

      docker pull fastestimator/fastestimator:nightly-gpu
    • CPU:

      docker pull fastestimator/fastestimator:nightly-cpu

Useful Links

  • Website: More info about FastEstimator API and news.
  • Tutorial Series: Everything you need to know about FastEstimator.
  • Application Hub: End-to-end deep learning examples in FastEstimator.

Citation

Please cite FastEstimator in your publications if it helps your research:

@misc{fastestimator,
  title  = {FastEstimator: A Deep Learning Library for Fast Prototyping and Productization},
  author = {Xiaomeng Dong and Junpyo Hong and Hsi-Ming Chang and Michael Potter and Aritra Chowdhury and
            Purujit Bahl and Vivek Soni and Yun-Chan Tsai and Rajesh Tamada and Gaurav Kumar and Caroline Favart and
            V. Ratna Saripalli and Gopal Avinash},
  note   = {NeurIPS Systems for ML Workshop},
  year   = {2019},
  url    = {http://learningsys.org/neurips19/assets/papers/10_CameraReadySubmission_FastEstimator_final_camera.pdf}
}

License

Apache License 2.0

0