DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration
supplementary-Compressed.mp4 |
bfr-1.mp4 |
bfr-2.mp4 |
inpainting-1.mp4 |
inpainting-2.mp4 |
color-1.mp4 |
color-2.mp4 |
2025/06/23
: Release our pretrained model on huggingface repo.2025/06/17
: Paper submitted on Arixiv. paper2025/06/16
: ๐๐๐ Release inference scripts
Status | Milestone | ETA |
---|---|---|
โ | Inference Code release | 2025-6-16 |
โ | Model Weight release๏ผ baidu-link | 2025-6-16 |
โ | Paper submitted on Arixiv | 2025-6-17 |
๐ | Test data release | 2025-6-24 |
๐ | Training Code release | 2025-6-24 |
- System requirement: PyTorch version >=2.4.1, python == 3.10
- Tested on GPUs: A800, python version == 3.10, PyTorch version == 2.4.1, cuda version == 12.1
Download the codes:
git clone https://github.com/fudan-generative-vision/DicFace
cd DicFace
Create conda environment:
conda create -n DicFace python=3.10
conda activate DicFace
Install PyTorch
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia
Install packages with pip
pip install -r requirements.txt
python basicsr/setup.py develop
conda install -c conda-forge dlib
The pre-trained weights have been uploaded to Baidu Netdisk. Please download them from the link
Now you can easily get all pretrained models required by inference from our HuggingFace repo.
File Structure of Pretrained Models The downloaded .ckpts directory contains the following pre-trained models:
.ckpts
|-- CodeFormer # CodeFormer-related models
| |-- bfr_100k.pth # Blind Face Restoration model
| |-- color_100k.pth # Color Restoration model
| `-- inpainting_100k.pth # Image Inpainting model
|-- dlib # dlib face-related models
| |-- mmod_human_face_detector.dat # Human face detector
| `-- shape_predictor_5_face_landmarks.dat # 5-point face landmark predictor
|-- facelib # Face processing library models
| |-- detection_Resnet50_Final.pth # ResNet50 face detector
| |-- detection_mobilenet0.25_Final.pth # MobileNet0.25 face detector
| |-- parsing_parsenet.pth # Face parsing model
| |-- yolov5l-face.pth # YOLOv5l face detection model
| `-- yolov5n-face.pth # YOLOv5n face detection model
|-- realesrgan # Real-ESRGAN super-resolution model
| `-- RealESRGAN_x2plus.pth # 2x super-resolution enhancement model
`-- vgg # VGG feature extraction model
`-- vgg.pth # VGG network pre-trained weights
python scripts/inference.py \
-i /path/to/video \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /bfr/bfr_weight.pth \
--bg_upsampler realesrgan \
--save_video
# or your videos has been aligned
python scripts/inference.py \
-i /path/to/video \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /bfr/bfr_weight.pth \
--save_video \
--has_aligned
The current colorization & inpainting tasks only supports input of aligned faces. If a non-aligned face is input, it may lead to unsatisfactory final results.
# for colorization task
python scripts/inference_color_and_inpainting.py \
-i /path/to/video_warped \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /colorization/colorization_weight.pth \
--bg_upsampler realesrgan \
--save_video \
--has_aligned
# for inpainting task
python scripts/inference_color_and_inpainting.py \
-i /path/to/video_warped \
-o /path/to/output_folder \
--max_length 10 \
--save_video_fps 24 \
--ckpt_path /inpainting/inpainting_weight.pth \
--bg_upsampler realesrgan \
--save_video \
--has_aligned
our test data link: https://pan.baidu.com/s/1zMp3fnf6LvlRT9CAoL1OUw?pwd=drhh
TBD
TBD
This project is open sourced under NTU S-Lab License 1.0. Redistribution and use should follow this license. The code framework is mainly modified from CodeFormer. Please refer to the original repo for more usage and documents.
If you find our work useful for your research, please consider citing the paper:
@misc{chen2025dicfacedirichletconstrainedvariationalcodebook,
title={DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration},
author={Yan Chen and Hanlin Shang and Ce Liu and Yuxuan Chen and Hui Li and Weihao Yuan and Hao Zhu and Zilong Dong and Siyu Zhu},
year={2025},
eprint={2506.13355},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2506.13355},
}