8000 GitHub - f15hb0wn/h2ogpt: Private chat with local GPT with document, images, video, etc. 100% private, Apache 2.0. Supports oLLaMa, Mixtral, llama.cpp, and more. Demo: https://gpt.h2o.ai/ https://gpt-docs.h2o.ai/
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
forked from h2oai/h2ogpt

Private chat with local GPT with document, images, video, etc. 100% private, Apache 2.0. Supports oLLaMa, Mixtral, llama.cpp, and more. Demo: https://gpt.h2o.ai/ https://gpt-docs.h2o.ai/

License

Notifications You must be signed in to change notification settings

f15hb0wn/h2ogpt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

h2oGPT

Forked from https://github.com/h2oai/h2ogpt. The intention of this fork is to be a bit more prescriptive and "turn-key" for less technical users.

Installation & Launch

Step 1: Configure a Docker service

  • Install Docker for Linux
  • Install Docker for Windows
  • Install Docker for MAC

Step 2: Enable GPU Support for Docker

Ensure docker installed and ready (requires sudo), can skip if system is already capable of running nvidia containers. Example here is for Ubuntu, see NVIDIA Containers for more examples.

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit-base
sudo apt install -y nvidia-container-runtime
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker

Confirm runs nvidia-smi from within docker without errors:

sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi

Step 3: Mount your data library in /data_sources.

This will allow you to scan the data outside of your docker image. You essentially want to create symbolic links to the /data_sources folder

Step 4 (Optional): Mount your database directory at /db_directory

You can skip this if not running in WSL. I mount this so I can back it up off my Windows machine.

Step 5: Download & edit docker-launch.sh with any additional settings.

The run-time level changes can be made here. This script contains everything from this repository you need to launch the software.

Step 4: Run sudo chmod +x docker-launch.sh ; sudo ./docker-launch.sh

This will allow launch the code. The first load will take a very long time if you have a lot of data to index.

Step 5: After data import is complete, navigate to the URL displayed

You should be able to interact with your data at this point

About

Private chat with local GPT with document, images, video, etc. 100% private, Apache 2.0. Supports oLLaMa, Mixtral, llama.cpp, and more. Demo: https://gpt.h2o.ai/ https://gpt-docs.h2o.ai/

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.5%
  • Jupyter Notebook 2.3%
  • TeX 1.8%
  • HTML 1.3%
  • Shell 0.6%
  • Dockerfile 0.2%
  • Other 0.3%
0