8000 GitHub - erdogant/bnlearn: Python package for Causal Discovery by learning the graphical structure of Bayesian networks. Structure Learning, Parameter Learning, Inferences, Sampling methods.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Python package for Causal Discovery by learning the graphical structure of Bayesian networks. Structure Learning, Parameter Learning, Inferences, Sampling methods.

License

Notifications You must be signed in to change notification settings

erdogant/bnlearn

Repository files navigation

Python PyPI Version GitHub Repo stars License Forks Open Issues Project Status Downloads Downloads DOI Docs Medium GitHub repo size Donate Colab

bnlearn is Python package for causal discovery by learning the graphical structure of Bayesian networks, parameter learning, inference, and sampling methods. Because probabilistic graphical models can be difficult to use, Bnlearn contains the most-wanted pipelines. Navigate to API documentations for more detailed information. ⭐️ Star it if you like it ⭐️


Key Pipelines

Feature Description
Causal Discovery / Structure Learning Learn the model structure from data or with expert knowledge.
Parameter Learning Estimate model parameters (e.g., conditional probability distributions) from observed data.
Causal Inference Compute interventional and counterfactual distributions using do-calculus.
Generate Synthetic Data Generate synthetic data.
Discretize Data Discretize continuous datasets.

Resources and Links


The following functions are available after installation:

Feature Description
Key Pipelines
Structure learning bn.structure_learning.fit()
Parameter learning bn.parameter_learning.fit()
Inference bn.inference.fit()
Make predictions bn.predict()
Generate Synthetic Data bn.sampling()
Compute Edge Strength bn.independence_test()
Key Functions
Imputations bn.knn_imputer()
Discretizing bn.discretize()
Check Model Parameters bn.check_model()
Create DAG bn.make_DAG()
Get Node Properties bn.get_node_properties()
Get Edge Properties bn.get_edge_properties()
Get Parents From Edges bn.get_parents()
Generate Default CPT per Node bn.generate_cpt()
Generate Default CPTs for All Edges bn.build_cpts_from_structure()
Make Plots
Plotting bn.plot()
Plot Graphviz bn.plot_graphviz()
Compare 2 Networks bn.compare_networks()
Load DAG (bif files) bn.import_DAG()
Load Examples bn.import_example()
Transformation Functions
Convert DAG to Undirected bn.to_undirected()
Convert to one-hot bn.df2onehot()
Convert Adjacency Matrix to Vector bn.adjmat2vec()
Convert Adjacency Matrix to Dictionary bn.adjmat2dict()
Convert Vector to Adjacency Matrix bn.vec2adjmat()
Convert DAG to Adjacency Matrix bn.dag2adjmat()
Convert DataFrame to Onehot bn.df2onehot()
Convert Query to DataFrame bn.query2df()
Convert Vector to DataFrame bn.vec2df()
Metrics
Compute Topological Ordering bn.topological_sort()
Compute Structure Scores bn.structure_scores()
General
Save Model bn.save()
Load Model bn.load()
Print CPTs bn.print_CPD()

Installation

Install bnlearn from PyPI
pip install bnlearn
Install bnlearn from github source
pip install git+https://github.com/erdogant/bnlearn
Load library
# Import library
import bnlearn as bn

Code Examples

    import bnlearn as bn
    # Example dataframe sprinkler_data.csv can be loaded with: 
    df = bn.import_example()
    # df = pd.read_csv('sprinkler_data.csv')

Cloudy  Sprinkler  Rain  Wet_Grass
0         0          1     0          1
1         1          1     1          1
2         1          0     1          1
3         0          0     1          1
4         1          0     1          1
..      ...        ...   ...        ...
995       0          0     0          0
996       1          0     0          0
997       0          0     1          0
998       1          1     0          1
999       1          0     1          1


    model = bn.structure_learning.fit(df)
    # Compute edge strength with the chi-square test statistic
    model = bn.independence_test(model, df)
    G = bn.plot(model)

# Example: Structure Learning

    model_hc_bic  = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
    model_hc_k2   = bn.structure_learning.fit(df, methodtype='hc', scoretype='k2')
    model_hc_bdeu = bn.structure_learning.fit(df, methodtype='hc', scoretype='bdeu')
    model_ex_bic  = bn.structure_learning.fit(df, methodtype='ex', scoretype='bic')
    model_ex_k2   = bn.structure_learning.fit(df, methodtype='ex', scoretype='k2')
    model_ex_bdeu = bn.structure_learning.fit(df, methodtype='ex', scoretype='bdeu')
    model_cl      = bn.structure_learning.fit(df, methodtype='cl', root_node='Wet_Grass')
    model_tan     = bn.structure_learning.fit(df, methodtype='tan', root_node='Wet_Grass', class_node='Rain')

# Example: Parameter Learning

    import bnlearn as bn
    # Import dataframe
    df = bn.import_example()
    # As an example we set the CPD at False which returns an "empty" DAG
    model = bn.import_DAG('sprinkler', CPD=False)
    # Now we learn the parameters of the DAG using the df
    model_update = bn.parameter_learning.fit(model, df)
    # Make plot
    G = bn.plot(model_update)

# Example: Inference

    import bnlearn as bn
    model = bn.import_DAG('sprinkler')
    query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1,'Sprinkler':0, 'Wet_Grass':1})
    print(query)
    print(query.df)
    
    # Lets try another inference
    query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1})
    print(query)
    print(query.df)

Contributors

Setting up and maintaining bnlearn has been possible thanks to users and contributors. Thanks to:

Maintainer

  • Erdogan Taskesen, github: erdogant
  • Contributions are welcome.
  • Yes! This library is entirely free but it runs on coffee! :) Feel free to support with a Coffee.

0