-
关于卷积的实现细节可以参考:
- [1]. Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)
- [2].A guide to receptive field arithmetic for Convolutional Neural Networks
- [3]. computeReceptiveField.py
-
在引用[3]的基础上,做了一些修改,以使得其能适应dilated convolution以及具有residual blocks的backbone。并且以darknet-53为例,计算感受野(Receptive field)。
-
CNNs的感受野大,但是不代表他的有效感受野也很大,甚至可能很小,而这个effective receptive field才是决定CNNs能力的关键。可以参考论文:
-
Notifications
You must be signed in to change notification settings - Fork 0
dodogoffy/RFs_Calculation
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
类似Resnet具有blocks的backbone的一个计算感受野(Receptive field)的实现
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published