fda.classification
fda.classification This set of functions visualise Functional Data (data comming from functions) at a discrete time using R. The Detailed proposal is available on this blog
Install the development version using install_github
within Hadley's devtools package.
install.packages("devtools")
require(devtools)
devtools::install_github("dapr12/fda.classification")
library('fda.classification')
Note:
Windows users have to first install Rtools.
- [fda] (http://cran.r-project.org/web/packages/fda/index.html)
- [splines] (http://cran.r-project.org/web/packages/splines/index.html)
- [MASS] (http://cran.r-project.org/web/packages/MASS/index.html)
- [KernSmooth] (http://cran.r-project.org/web/packages/KernSmooth/index.html)
- [ks] (http://cran.r-project.org/web/packages/ks/index.html)
For examples
- [fdaExamples] (https://github.com/dapr12/fdaexamples/blob/master/fdaexamples.R)
fdaclass(mdata, argval, rangeval)
outliergram(fdaobj)
smoothfda(fdaobj , bandwidth, degree )
gcsvc( fdaobj, norder, lambda, Lf, Intv )
smoothbsplines( fdaobj, norder, lambda, Lf)
fderiv(fdaobj,nderiv)
Medianfd(Smoothfda)
dpout(Eigenvalues, plotting)
pcafd( fdaobj, nharm )
densityScores(pcaobj2, 2)
fdensity( fdaobj, pcaobj, bandwith, plotting)
varfd(Smoothfda)
classfd(Classlearn, train, test)
pdfclasf(data, test, indClass0, indClass1, indtest )
simulatefda( nsamples, ndrawn, rangeval, mean, sigma )