8000 GitHub - csrqli/variational-3dgs
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

csrqli/variational-3dgs

Repository files navigation

Variational Multi-scale Representation for Estimating Uncertainty in 3D Gaussian Splatting

Ruiqi Li, Yiu-ming Cheung
Paper Link

This repository contains the official open-source implementation of the paper "Variational Multi-scale Representation for Estimating Uncertainty in 3D Gaussian Splatting". We developed an uncertainty estimation method for Gaussian Splatting method based on Bayesian inference framework and multi-scale representation.

Citation

If you found our work useful welcome to cite our paper:

@inproceedings{li2024variational,
  title={Variational Multi-scale Representation for Estimating Uncertainty in 3D Gaussian Splatting},
  author={Li, Ruiqi and Cheung, Yiu-ming},
  booktitle={Advances in Neural Information Processing Systems},
  volume={37},
  pages={87934--87958},
  year={2024}
}

Requirements

Hardware Requirements

CUDA-ready GPU with Compute Capability 7.0+

Software Requirements

Conda (recommended for easy setup)

C++ Compiler for PyTorch extensions

CUDA SDK 11 for PyTorch extensions

C++ Compiler and CUDA SDK must be compatible

Usage

Cloning the Repository

Please clone with submodules:

# SSH
git clone git@github.com:csrqli/variational-3dgs.git --recursive

or

# HTTPS
git clone https://github.com/csrqli/variational-3dgs --recursive

Setup

We provide conda environment file to creat experiment environment:

conda env create --file environment.yml
conda activate variational_gs

We test our code on ubuntu system, please refer to original 3DGS repo about the potential error building the environment or running on windows.

Preparing Dataset

The LF dataset and LLFF dataset files are provided here: LF dataset, LLFF dataset.

Please unzip and put them under the a dataset folder:

variational-gs
│
├──dataset
│   │  
│   ├──── LF
│   └──── nerf_llff_data

Running

To train and evaluate the image quality and the image/depth uncertainty on LF dataset:

python train.py --eval --dataset_name LF -s ./dataset/LF/$scene_name --resolution 2 --iterations 3000 --densify_until_iter 2000 --model_path ./output/$scene_name

To get the averaged results:

python stat.py --dataset_name LF

To train and evaluate the image quality and image uncertainty quality on LLFF dataset:

python train.py --eval --dataset_name LLFF -s ./dataset/nerf_llff_data/$scene_name --resolution 8 --iterations 7000 --densify_until_iter 4000 --model_path ./output/$scene_name

and also get the averaged results:

python stat.py --dataset_name LLFF

Funding and Acknowledgments

This work was supported in part by the NSFC / Research Grants Council (RGC) Joint Research Scheme under the grant: N_HKBU214/21, and the RGC Senior Research Fellow Scheme under the grant: SRFS2324-2S02.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0