8000 Optimizer: new API by dsblank · Pull Request #2050 · comet-ml/opik · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Optimizer: new API #2050

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
May 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 0 additions & 37 deletions sdks/opik_optimizer/benchmarks/dspy-mipro-hotpot-500.py

This file was deleted.

Oops, something went wrong.
55 changes: 0 additions & 55 deletions sdks/opik_optimizer/benchmarks/opik-mipro-hotpot-500.py

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
from opik_optimizer.demo import get_or_create_dataset

from opik_optimizer import (
OptimizationConfig,
MetricConfig,
PromptTaskConfig,
from_dataset_field,
Expand Down Expand Up @@ -52,7 +51,6 @@ def score(
Answer with just one word: 'yes' if there is a hallucination and 'no' if there is not.
"""


optimizer = FewShotBayesianOptimizer(
model="gpt-4o-mini",
project_name=project_name,
Expand All @@ -62,54 +60,27 @@ def score(
seed=42,
)


optimization_config = OptimizationConfig(
dataset=halu_eval_dataset,
objective=MetricConfig(
metric=halu_eval_accuracy,
inputs={
"output": from_llm_response_text(),
"ground_truth": from_dataset_field(name="expected_hallucination_label"),
},
),
task=PromptTaskConfig(
instruction_prompt=prompt_instruction,
input_dataset_fields=["input", "llm_output"],
output_dataset_field="expected_hallucination_label",
use_chat_prompt=True,
),
)

initial_prompt_no_examples = [
{"role": "system", "content": prompt_instruction},
{
"role": "user",
"content": "The user input: {{input}} \n\n The llm output: {{llm_output}}",
metric_config = MetricConfig(
metric=halu_eval_accuracy,
inputs={
"output": from_llm_response_text(),
"ground_truth": from_dataset_field(name="expected_hallucination_label"),
},
]

initial_score = optimizer.evaluate_prompt(
dataset=halu_eval_dataset,
metric_config=optimization_config.objective,
prompt=initial_prompt_no_examples,
num_test=100,
)

print("Initial score:", initial_score)

result = optimizer.optimize_prompt(
optimization_config,
n_trials=5,
num_test=100,
task_config = PromptTaskConfig(
instruction_prompt=prompt_instruction,
input_dataset_fields=["input", "llm_output"],
output_dataset_field="expected_hallucination_label",
use_chat_prompt=True,
)

print("Final prompt:", result.prompt)

final_score = optimizer.evaluate_prompt(
result = optimizer.optimize_prompt(
dataset=halu_eval_dataset,
metric_config=optimization_config.objective,
prompt=result.prompt,
num_test=100,
metric_config=metric_config,
task_config=task_config,
n_trials=5,
n_samples=10,
)

print("Final score:", final_score)
print("Result:", result)
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
from opik.evaluation.metrics import LevenshteinRatio
from opik.evaluation.metrics import Equals
from opik_optimizer.few_shot_bayesian_optimizer import FewShotBayesianOptimizer
from opik_optimizer.demo import get_or_create_dataset

from opik_optimizer import (
OptimizationConfig,
MetricConfig,
PromptTaskConfig,
from_dataset_field,
Expand All @@ -17,10 +16,6 @@
Answer the question.
"""
project_name = "optimize-few-shot-bayesian-hotpot"
initial_prompt_no_examples = [
{"role": "system", "content": prompt_instruction},
{"role": "user", "content": "{{question}}"},
]

optimizer = FewShotBayesianOptimizer(
model="gpt-4o-mini",
Expand All @@ -31,40 +26,27 @@
seed=42,
)

optimization_config = OptimizationConfig(
dataset=hot_pot_dataset,
objective=MetricConfig(
metric=LevenshteinRatio(project_name=project_name),
inputs={
"output": from_llm_response_text(),
"reference": from_dataset_field(name="answer"),
},
),
task=PromptTaskConfig(
instruction_prompt=prompt_instruction,
input_dataset_fields=["question"],
output_dataset_field="answer",
use_chat_prompt=True,
),
metric_config = MetricConfig(
metric=Equals(project_name=project_name),
inputs={
"output": from_llm_response_text(),
"reference": from_dataset_field(name="answer"),
},
)

initial_score = optimizer.evaluate_prompt(
dataset=hot_pot_dataset,
metric_config=optimization_config.objective,
prompt=initial_prompt_no_examples,
task_config = PromptTaskConfig(
instruction_prompt=prompt_instruction,
input_dataset_fields=["question"],
output_dataset_field="answer",
use_chat_prompt=True,
)

print("Initial prompt:", initial_prompt_no_examples)
print("Initial score:", initial_score)

result = optimizer.optimize_prompt(optimization_config, n_trials=10)

print("Final prompt:", result.prompt)

final_score = optimizer.evaluate_prompt(
result = optimizer.optimize_prompt(
dataset=hot_pot_dataset,
metric_config=optimization_config.objective,
prompt=result.prompt,
metric_config=metric_config,
task_config=task_config,
n_trials=10,
n_samples=100,
)

print("Final score:", final_score)
print("Result:", result)
56 changes: 17 additions & 39 deletions sdks/opik_optimizer/scripts/meta_prompt_hotpot_example.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
from opik_optimizer import MetaPromptOptimizer
from opik.evaluation.metrics import LevenshteinRatio
from opik.evaluation.metrics import Equals
from opik_optimizer.demo import get_or_create_dataset

from opik_optimizer import (
OptimizationConfig,
MetricConfig,
PromptTaskConfig,
from_dataset_field,
Expand All @@ -30,49 +29,28 @@
)

# Create the optimization configuration
optimization_config = OptimizationConfig(
dataset=hotpot_dataset,
objective=MetricConfig(
metric=LevenshteinRatio(project_name=project_name),
inputs={
"output": from_llm_response_text(),
"reference": from_dataset_field(name="answer"),
},
),
task=PromptTaskConfig(
instruction_prompt=initial_prompt,
input_dataset_fields=["question"],
output_dataset_field="answer",
),
)

# Evaluate the initial prompt
initial_score = optimizer.evaluate_prompt(
dataset=hotpot_dataset,
metric_config=optimization_config.objective,
task_config=optimization_config.task,
prompt=initial_prompt,
num_test=100,
metric_config = MetricConfig(
metric=Equals(project_name=project_name),
inputs={
"output": from_llm_response_text(),
"reference": from_dataset_field(name="answer"),
},
)

print("Initial prompt:", initial_prompt)
print("Initial score:", initial_score)
task_config = PromptTaskConfig(
instruction_prompt=initial_prompt,
input_dataset_fields=["question"],
output_dataset_field="answer",
)

# Optimize the prompt using the optimization config
result = optimizer.optimize_prompt(
config=optimization_config,
num_test=100,
)

print(result)

# Evaluate the final optimized prompt
final_score = optimizer.evaluate_prompt(
dataset=hotpot_dataset,
metric_config=optimization_config.objective,
task_config=optimization_config.task,
prompt=result.prompt,
num_test=100,
metric_config=metric_config,
task_config=task_config,
auto_continue=False,
n_samples=10,
)

print("Final score:", final_score)
print(result)
Loading
0