8000 GitHub - cloversjtu/dir-vhred: Dirichlet Latent Variable Hierarchical Recurrent Encoder-Decoder in dialogue generation(EMNLP2019)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Dirichlet Latent Variable Hierarchical Recurrent Encoder-Decoder in dialogue generation(EMNLP2019)

License

Notifications You must be signed in to change notification settings

cloversjtu/dir-vhred

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dirichlet Latent Variable Hierarchical Recurrent Encoder-Decoder in dialogue generation(EMNLP2019)

Description

This repository hosts the Dir-VHRED model for dialogue generation as described by Min and Yisen et al.2019

requirements

  • pandas==0.20.3
  • numpy==1.14.0
  • gensim==3.1.0
  • spacy==1.9.0
  • tqdm==4.15.0
  • nltk==3.2.5
  • tensorboardX==1.1
  • torch==0.4

1.Prepare the dataset:

1.download the ubuntu corpus in http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/ & movie corpus in https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

2.split the dataset with train/validation/test rate: 0.8,0.1,0.1

3.run code: python3 cornell_preprocess.py python3 ubuntu_preprocess.py

2.Train the model:

python3 train.py --data=ubuntu --batch_size=40 --eval_batch_size=40 --kl_annealing_iter=100000 --word_drop=0.25 --z_sent_size=3

python3 train.py --data=cornell --batch_size=40 --eval_batch_size=40 --kl_annealing_iter=20000 --word_drop=0.25 --z_sent_size=3

3.Evaluate the model(negative log-likelihood):

python3 eval.py --data=ubuntu --batch_size=40 --eval_batch_size=40 --z_sent_size=3 --checkpoint=xxxx

python3 eval.py --data=cornell --batch_size=40 --eval_batch_size=40 --z_sent_size=3 --checkpoint=xxxx

4.Evaluate the model(word-embedding metric):

python3 eval_embed.py --data=ubuntu --batch_size=40 --eval_batch_size=40 --z_sent_size=3 --checkpoint=xxxx --beam_size=5 --n_sample_step=3 #n_sample_step=1 means 1-turn while n_sample_step=3 means 3-turn responses

python3 eval_embed.py --data=cornell --batch_size=40 --eval_batch_size=40 --z_sent_size=3 --checkpoint=xxxx --beam_size=5 --n_sample-step=3

5.Generate the response:

python3 generate_sentence.py --data=ubuntu --batch_size=40 --kl_annealing_iter=100000 --word_drop=0.25 --z_sent_size=3 --checkpoint=xxx

python3 generate_sentence.py --data=cornell --batch_size=40 --kl_annealing_iter=20000 --word_drop=0.25 --z_sent_size=3 --checkpoint=xxx

About

Dirichlet Latent Variable Hierarchical Recurrent Encoder-Decoder in dialogue generation(EMNLP2019)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0