8000 GitHub - cdchushig/bentoml-iris
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

cdchushig/bentoml-iris

Repository files navigation

iris-bentoml

Crear cuenta en bentoml:

https://www.bentoml.com/

Login en bentouml desde ordenador local:

bentoml cloud login

Instalar librerías Python:

pip install bentoml mlflow scikit-learn

Iniciar MLflow tracking server:

mlflow server --host 127.0.0.1 --port 8080

Verify the model is saved to the Model Store:

bentoml models list

Serve the model using the BentoML CLI:

bentoml serve bentoml_service.py:IrisClassifier --port=3001
bentoml serve bentoml_service_advanced.py:IrisClassifier --port=3002
bentoml serve bentoml_service_multiple.py:IrisClassifier --port=3003

Make requests by curl:

curl -X 'POST'   'http://localhost:3000/predict'   -H 'accept: application/json'   -H 'Content-Type: application/json'   -d '{
  "input_data": [[
    5.9, 3.0, 5.1, 1.8
  ]]
}'
curl -X 'POST'   'http://localhost:3000/predict'   -H 'accept: application/json'   -H 'Content-Type: application/json'   -d '{
  "input_data": [[
    5.9, 3.0, 5.1, 1.8
  ]]
}'
curl -X 'POST'   'http://localhost:3000/predict'   -H 'accept: application/json'   -H 'Content-Type: application/json'   -d '{
  "input_data": [[
    5.9, 3.0, 5.1, 1.8
  ]]
}'
curl -X 'POST'   'http://localhost:3002/v1/predict'   -H 'accept: application/json'   -H 'Content-Type: application/json'   -d '{
  "input_data": [[
    5.9, 3.0, 5.1, 1.8
  ]]
}'
curl -X 'POST'   'http://localhost:3002/v2/predict'   -H 'accept: application/json'   -H 'Content-Type: application/json'   -d '{
  "input_data": [[
    5.9, 3.0, 5.1, 1.8
  ]]
}'
curl -X 'POST'   'http://localhost:3002/predict_combined/predict'   -H 'accept: application/json'   -H 'Content-Type: application/json'   -d '{
  "input_data": [[
    5.9, 3.0, 5.1, 1.8
  ]]
}'

Inspect the OpenAPI documentation to see the required schema for your service:

curl localhost:3000/docs.json

Deploying to Production

BentoML provides multiple options for production deployment:

Containerization: Build an OCI-compliant image for your ML service for deployment on any container platform:

bentoml build
bentoml containerize iris_classifier:latest

Next steps:

  • Deploy to BentoCloud:
bentoml deploy iris_classifier:mmd2rarxb6fexe65 -n ${DEPLOYMENT_NAME}
  • Update an existing deployment on BentoCloud:
bentoml deployment update --bento iris_classifier:mmd2rarxb6fexe65 ${DEPLOYMENT_NAME}
  • Containerize your Bento with bentoml containerize:
bentoml containerize iris_classifier:mmd2rarxb6fexe65
  • Push to BentoCloud with bentoml push: $ bentoml push iris_classifier:mmd2rarxb6fexe65

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0