8000 GitHub - blre6/ConZIC_copy: Official implementation of "ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
forked from joeyz0z/ConZIC

Official implementation of "ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing"

License

Notifications You must be signed in to change notification settings

blre6/ConZIC_copy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
< 8000 svg aria-hidden="true" focusable="false" class="octicon octicon-file-directory-fill icon-directory" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ConZIC

[CVPR 2023]ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing
Zequn Zeng, Hao Zhang, Zhengjue Wang, Ruiying Lu, Dongsheng Wang, Bo Chen

arXiv Hugging Face Spaces Open In Colab

News

  • [2023/4] Adding demo on Huggingface Space and Colab!
  • [2023/3] ConZIC is publicly released!

Framework

Example of length control

Example of sentiment control

Example of part-of-speech control

Example of diverse captioning

Example of various image styles with world knowledge

DEMO

Preparation

Please download CLIP and BERT from Huggingface Space.

SketchyCOCOcaption benchmark in our work is available here.

Environments setup.

pip install -r requirements.txt

To run zero-shot captioning on images:

ConZIC supports arbitary generation orders by change order. You can increase alpha for more fluency, beta for more image content. Notably, there is a trade-off between fluency and image-matching degree.
Sequential: update tokens in classical left to right order. At each iteration, the whole sentence will be updated.

python demo.py --run_type "caption" --order "sequential" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0

Shuffled: update tokens in random shuffled generation order, different orders resulting in different captions.

python demo.py --run_type "caption" --order "shuffle" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 3
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0 

Random: only randomly select a position and then update this token at each iteration, high diversity due to high randomness.

python demo.py --run_type "caption" --order "random" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 3
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0

To run controllable zero-shot captioning on images:

ConZIC supports many text-related controllable signals. For examples:
Sentiments(positive/negative): you can increase gamma for higher controllable degree, there is also a trade-off.

python demo.py 
--run_type "controllable" --control_type "sentiment" --sentiment_type "positive"
--order "sequential" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0 --gamma 5.0

Part-of-speech(POS): it will meet the predefined POS templete as much as possible.

python demo.py 
--run_type "controllable" --control_type "pos" --order "sequential"
--pos_type "your predefined POS templete"
--sentence_len 10 --caption_img_path "./examples/girl.jpg"  --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32" 
--alpha 0.02 --beta 2.0 --gamma 5.0

Length: change sentence_len.

Gradio Demo

You can use the WebUI demo in your browser from the local url: http://127.0.0.1:7860.

pip install gradio
python app.py

You can also use the demo.launch() function to create a public link used by anyone to access the demo from their browser by setting share=True.


Citation

Please cite our work if you use it in your research:

@article{zeng2023conzic,
  title={ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing},
  author={Zeng, Zequn and Zhang, Hao and Wang, Zhengjue and Lu, Ruiying and Wang, Dongsheng and Chen, Bo},
  journal={arXiv preprint arXiv:2303.02437},
  year={2023}
}

Contact

If you have any questions, please contact zzequn99@163.com or zhanghao_xidian@163.com.

Acknowledgment

This code is based on the bert-gen and MAGIC.

Thanks for Jiaqing Jiang providing huggingface and Colab demo.

About

Official implementation of "ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0