8000 GitHub - birkhoffkiki/DTR: The implementation of DTR
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

birkhoffkiki/DTR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

header GitHub last commit X (formerly Twitter) Follow Python Version PyTorch


Last Updated: 27/04/2025

The official implementation of DGR, a generative AI model for virtual staining in histopathology workflows.

main_figure

Overview

DGR is a novel framework designed for virtual staining of histopathology images with enhanced resistance to misalignment. Our method enables:

  • High-fidelity stain transformation between different histopathology modalities
  • Robust performance despite common tissue section misalignments
  • Significant acceleration of histopathology workflows

Key Features

  • 🚀 High-quality transformations
  • 🔄 Misalignment-resistant
  • ⏱️ Fast inference
  • 📊 Multi-dataset support
  • 🧠 Modular architecture

Installation

Setup

  1. Clone this repository:
git clone https://github.com/birkhoffkiki/DTR.git
cd DTR
conda create --name DTR python=3.9
conda activate DTR
pip install -r requirements.txt

Data preparation

Training

# For Aperio-Hamamatsu dataset
bash train_aperio.sh

# For HEMIT dataset
bash train_hemit.sh

Pretrained Models

Model Name Download Link
AF2HE Weight Download
HE2PAS Weight Download
HEMIT Weight Download
Aperio Weight Download

Inference

Example notebook: play_with_the_pretrained_model.ipynb

contact

if you have any questions, please feel free to contact me:

0