8000 GitHub - bagel-org/zkLoRA: Efficient Zero-Knowledge Proofs for LoRA Verification
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

bagel-org/zkLoRA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bagel Logo

Twitter Follow Substack Follow License

ZKLoRA

Efficient Zero-Knowledge Proofs for LoRA Verification


ZKLoRA: Efficient Zero-Knowledge Proofs for LoRA Verification

Low-Rank Adaptation (LoRA) is a widely adopted method for customizing large-scale language models. In distributed, untrusted training environments, an open source base model user may want to use LoRA weights created by an external contributor, leading to two requirements:

  1. Base Model User Verification: The user must confirm that the LoRA weights are effective when paired with the intended base model.
  2. LoRA Contributor Protection: The contributor must keep their proprietary LoRA weights private until compensation is assured.

To solve this, we created ZKLoRA a zero-knowledge ve 8000 rification protocol that relies on polynomial commitments, succinct proofs, and multi-party inference to verify LoRA–base model compatibility without exposing LoRA weights. With ZKLoRA, verification of LoRA modules takes just 1-2 seconds, even for state-of-the-art language models with tens of billions of parameters.

For detailed information about this research, please refer to our paper.

Quick Usage Instructions

1. LoRA Contributor Side (User A)

First, install ZKLoRA using pip:

pip install zklora

Use src/scripts/lora_contributor_sample_script.py to:

  • Host LoRA submodules
  • Handle inference requests
  • Generate proof artifacts
import argparse
import threading
import time

from zklora import LoRAServer, AServerTCP

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", default="127.0.0.1")
    parser.add_argument("--port_a", type=int, default=30000)
    parser.add_argument("--base_model", default="distilgpt2")
    parser.add_argument("--lora_model_id", default="ng0-k1/distilgpt2-finetuned-es")
    parser.add_argument("--out_dir", default="a-out")
    args = parser.parse_args()

    stop_event = threading.Event()
    server_obj = LoRAServer(args.base_model, args.lora_model_id, args.out_dir)
    t = AServerTCP(args.host, args.port_a, server_obj, stop_event)
    t.start()

    try:
        while True:
            time.sleep(1)
    except KeyboardInterrupt:
        print("[A-Server] stopping.")
    stop_event.set()
    t.join()

if __name__ == "__main__":
    main()

2. Base Model User Side (User B)

Use src/scripts/base_model_user_sample_script.py to:

  • Load and patch the base model
  • Connect to A's submodules
  • Perform inference
  • Trigger proof generation
import argparse

from zklora import BaseModelClient

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--host_a", default="127.0.0.1")
    parser.add_argument("--port_a", type=int, default=30000)
    parser.add_argument(
        "--contributors",
        nargs="*",
        help="Additional LoRA contributors as host:port",
    )
    parser.add_argument("--base_model", default="distilgpt2")
    parser.add_argument("--combine_mode", choices=["replace","add_delta"], default="add_delta")
    args = parser.parse_args()

    contributors = [(args.host_a, args.port_a)]
    if args.contributors:
        for item in args.contributors:
            host, port = item.split(":")
            contributors.append((host, int(port)))

    client = BaseModelClient(
        base_model=args.base_model,
        combine_mode=args.combine_mode,
        contributors=contributors,
    )
    client.init_and_patch()

    # Run inference => triggers remote LoRA calls on A
    text = "Hello World, this is a LoRA test."
    loss_val = client.forward_loss(text)
    print(f"[B] final loss => {loss_val:.4f}")

    # End inference => A finalizes proofs offline
    client.end_inference()
    print("[B] done. B can now fetch proof files from A and verify them offline.")

if __name__=="__main__":
    main()

3. Proof Verification

Use src/scripts/verify_proofs.py to validate the proof artifacts:

#!/usr/bin/env python3
"""
Verify LoRA proof artifacts in a given directory.

Example usage:
  python verify_proofs.py --proof_dir a-out --verbose
"""

import argparse
from zklora import batch_verify_proofs

def main():
    parser = argparse.ArgumentParser(
        description="Verify LoRA proof artifacts in a given directory."
    )
    parser.add_argument(
        "--proof_dir",
        type=str,
        default="proof_artifacts",
        help="Directory containing proof files (.pf), plus settings, vk, srs."
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        help="Print more details during verification."
    )
    args = parser.parse_args()

    total_verify_time, num_proofs = batch_verify_proofs(
        proof_dir=args.proof_dir,
        verbose=args.verbose
    )
    print(f"Done verifying {num_proofs} proofs. Total time: {total_verify_time:.2f}s")

if __name__ == "__main__":
    main()

4. Polynomial Commitment of Activations

ZKLoRA includes a robust polynomial commitment scheme for securely committing to neural network activations without revealing the underlying data. This cryptographic primitive enables privacy-preserving verification of computations.

Basic Usage

from zklora import commit_activations, verify_commitment

# Commit to activation data stored in JSON format
commitment = commit_activations("activations.json")

# Verify the commitment against original data
is_valid = verify_commitment("activations.json", commitment)
assert is_valid

Commitment Features

The polynomial commitment scheme provides several key properties:

  • Zero-Knowledge: Commitments reveal no information about the underlying activation data
  • Binding: Once created, commitments cannot be changed to refer to different data
  • Deterministic Verification: Given the same data and nonce, verification is consistent
  • Cryptographic Security: Uses BLAKE3 hashing and polynomial arithmetic over finite fields

Advanced Usage Examples

Committing to Different Data Types:

import json
from zklora import commit_activations, verify_commitment

# Example with floating point activations
activation_data = {
    "input_data": [1.5, 2.7, -3.14, 0.0, 42.8]
}
with open("float_activations.json", "w") as f:
    json.dump(activation_data, f)

commitment = commit_activations("float_activations.json")
assert verify_commitment("float_activations.json", commitment)

# Example with nested activation structures (automatically flattened)
nested_data = {
    "input_data": [[1, 2], [3, [4, 5]], 6]
}
with open("nested_activations.json", "w") as f:
    json.dump(nested_data, f)

nested_commitment = commit_activations("nested_activations.json")
assert verify_commitment("nested_activations.json", nested_commitment)

Batch Processing for Multiple Modules:

import os
from zklora import commit_activations, verify_commitment

# Commit to activations from multiple LoRA modules
module_commitments = {}
activation_files = ["module1_acts.json", "module2_acts.json", "module3_acts.json"]

for file_path in activation_files:
    if os.path.exists(file_path):
        commitment = commit_activations(file_path)
        module_commitments[file_path] = commitment
        print(f"Committed to {file_path}: {commitment[:50]}...")

# Verify all commitments
for file_path, commitment in module_commitments.items():
    is_valid = verify_commitment(file_path, commitment)
    print(f"Verification for {file_path}: {'✓ VALID' if is_valid else '✗ INVALID'}"
8000
)

Understanding Commitment Structure:

import json
from zklora import commit_activations

# Create a commitment and examine its structure
commitment_str = commit_activations("activations.json")
commitment_data = json.loads(commitment_str)

print("Commitment structure:")
print(f"Root hash: {commitment_data['root']}")     # Merkle tree root
print(f"Nonce: {commitment_data['nonce']}")        # Cryptographic nonce
print(f"Root length: {len(commitment_data['root'])}")  # 66 chars (0x + 64 hex)
print(f"Nonce length: {len(commitment_data['nonce'])}")  # 66 chars (0x + 64 hex)

Security Properties

  1. Collision Resistance: Different activation datasets produce different commitments
  2. Hiding Property: Commitments reveal no information about the committed data
  3. Non-Malleability: Cannot modify commitments without detection
  4. Efficient Verification: Verification scales logarithmically with data size

Use Cases in Multi-Party LoRA

  • Activation Integrity: Ensure base model activations haven't been tampered with
  • Privacy-Preserving Audits: Allow verification without revealing sensitive data
  • Multi-Contributor Scenarios: Enable secure collaboration between multiple LoRA providers
  • Proof Generation: Create verifiable evidence of correct computation

5. Running Tests

Run unit tests with:

pytest

Code Structure

For detailed information about the codebase organization and implementation details, see Code Structure.

Summary

Trust-Minimized Verification: Zero-knowledge proofs enable secure LoRA validation
Rapid Verification: 1-2 second processing per module, even for billion-parameter models
Multi-Party Inference: Protected activation exchange between parties
Complete Privacy: LoRA weights remain confidential while ensuring compatibility
Production Ready: Efficiently scales to handle multiple LoRA modules

Polynomial commitments for base model activations and multi-contributor LoRA scenarios are supported starting in version 0.1.2.

Credits

ZKLoRA is built upon these outstanding open source projects:

Project Description
PEFT Parameter-Efficient Fine-Tuning library by Hugging Face
Transformers State-of-the-art Natural Language Processing
dusk-merkle Merkle tree implementation in Rust
BLAKE3 Cryptographic hash function
EZKL Zero-knowledge proof system for neural networks
ONNX Runtime Cross-platform ML model inference

Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

About

Efficient Zero-Knowledge Proofs for LoRA Verification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  
0