10000 GitHub - ashari4/ort at natke-patch-1
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ashari4/ort

 
 

Repository files navigation

Train PyTorch models with ONNX Runtime

ONNX Runtime for PyTorch accelerates PyTorch model training using ONNX Runtime.

It is available via the torch-ort python package.

This repository contains the source code for the package as well as instructions for running the package and samples demonstrating how to do so.

Pre-requisites

You need a machine with at least one NVIDIA or AMD GPU to run ONNX Runtime for PyTorch.

You can install and run torch-ort in your local environment, or with Docker.

Run in a Python environment

Default dependencies

By default, torch-ort depends on PyTorch 1.8.1, ONNX Runtime 1.8 and CUDA 10.2.

  1. Install CUDA 10.2

  2. Install CuDNN 7.6

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch-ort

Explicitly install for NVIDIA CUDA 10.2

  1. Install CUDA 10.2

  2. Install CuDNN 7.6

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch==1.8.1
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_cu102.html
    • pip install torch-ort

Explicitly install for NVIDIA CUDA 11.1

  1. Install CUDA 11.1

  2. Install CuDNN 8.0

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch==1.8.1
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_cu111.html
    • pip install torch-ort

Explicitly install for AMD ROCm 4.1

  1. Install ROCm 4.1 base package (instructions)

  2. Install ROCm 4.1 libraries (instructions)

  3. Install ROCm 4.1 RCCL (instructions)

  4. Install torch-ort and dependencies

    • pip install ninja
    • pip install --pre torch -f https://download.pytorch.org/whl/nightly/rocm4.1/torch_nightly.html
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_rocm41.html
    • pip install torch-ort

Run using Docker

The docker directory contains dockerfiles for the NVIDIA CUDA 11.1 configuration.

  1. Build the docker image

    docker build -f Dockerfile.ort-cu111-cudnn8-devel-ubuntu18.04 -t ort.cu111 .

  2. Run the docker container using the image you have just built

    docker run -it --gpus all --name my-experiments ort.cu111:latest /bin/bash

Test your installation

  1. Clone this repo
  • git clone git@github.com:pytorch/ort.git
  1. Install extra dependencies
  • pip install wget pandas sklearn transformers
  1. Run the training script
  • python ./ort/tests/bert_for_sequence_classification.py

Add ONNX Runtime for PyTorch to your PyTorch training script

import onnxruntime
from torch_ort import ORTModule
model = ORTModule(model)
# PyTorch training script follows

About

Accelerate PyTorch models with ONNX Runtime

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.8%
  • Shell 6.4%
  • C++ 5.8%
0