8000 GitHub - alaiasolkobreslin/ISED
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

alaiasolkobreslin/ISED

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data-Efficient Learning with Neural Programs

Thi 7BFF s repository is the official implementation of Data-efficient learning with Neural Programs.

Requirements

Run the following:

  1. Install the dependencies inside a new virtual environment: bash setup.sh

  2. Activate the virtual environment: conda activate ISED

  3. (Optional) Install package for Neural-GPT experiments: pip install openai

Datasets

  • Leaf Identification: download the leaf dataset and place it under data/leaf_11.

  • Scene Recognization: download the scene dataset and place it under data/scene.

  • Hand-written Formula: download the hwf dataset and place it under data/hwf.

  • Visual Sudoku: download the SatNet dataset, unzip the data, and place features.pt, features_img.pt, labels.pt, and perm.pt under data/original_data.

Experiments

To reproduce custom ISED experiments in the paper, run

cd custom/<TASK>
python PATH_TO_PROGRAM.py

To reproduce ISED MNIST-R experiments, run

cd generation-pipeline
python run.py --task <TASK>

where possible task names are sum_2_mnist, sum_3_mnist, sum_4_mnist, less_than_mnist, eq_2_mnist, mod_2_mnist, add_mod_3_mnist, add_sub_mnist, mult_2_mnist, not_3_or_4_mnist, how_many_3_or_4_mnist.

We used 10 random seeds [1357, 2468, 3177, 5848, 9175, 1234, 8725, 548, 6787, 8371] for all experiments, except for custom/sample_count where we used the first 5.

To reproduce experiements for the baselines, we provide additional instructions for A-NeSI, DeepProbLog, NASR, REINFORCE, IndeCateR, and Scallop.

Acknowledgements

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages

0