8000 GitHub - akjagadish/tutorial-metarl
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

akjagadish/tutorial-metarl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tutorial on meta-rl

pip install

cd ~/tutorial-metarl/
python -m venv pytorch-gpu
source pytorch-gpu/bin/activate
pip3 install -r requirements.txt
pip3 install -e .

docker

build docker image

docker build -t tutorial_metarl .

create .env

add line JUPYTER_PASSWORD=tutorial_metarl

run docker container

using GPU

docker run --rm -d --name dev_user --env-file .env -v "/path/to/tutorial_metarl/:/notebooks/" -w "/notebooks/" -p 1236:8888 --runtime nvidia -e NVIDIA_VISIBLE_DEVICES=0 tutorial_metarl:latest

using CPU

docker run --rm -d --name dev_user --env-file .env -v "/path/to/tutorial_metarl/:/notebooks/" -w "/notebooks/" -p 1236:8888 tutorial_metarl:latest

Now, the notebooks should be accessble at the port 1236 (on your PC http://localhost:1236/lab? or on the server http://your.server.ip.address:1236). Note: building docker container takes time and space as it includes a lot of other libraries often used in deep learning. But it can easily be reused as base image for your other containers.

conda install

conda install PyTorch -c PyTorch
python3 setup.py install

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0