-
Notifications
You must be signed in to change notification settings - Fork 0
abuzarmahmood/neuRecommend
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
____ _ _ __ ___ _ _| _ \ ___ ___ ___ _ __ ___ _ __ ___ ___ _ __ __| | | '_ \ / _ \ | | | |_) / _ \/ __/ _ \| '_ ` _ \| '_ ` _ \ / _ \ '_ \ / _` | | | | | __/ |_| | _ < __/ (_| (_) | | | | | | | | | | | __/ | | | (_| | |_| |_|\___|\__,_|_| \_\___|\___\___/|_| |_| |_|_| |_| |_|\___|_| |_|\__,_| Spike waveform classifier aimed at: 1- Removing noise during preprocessing for improved clustering 1.5- Output from classifier provides an additional high quality feature for clustering on 2- Recommending electrodes with neurons for user ease == Note: - Classifier threshold is internationally set conservatively so false negatives are minimized (i.e. number of actual spikes discarded is minimized). ############################################################ ## Dataset ############################################################ Aiming for a 2GB dataset, half and half for spikes and noise. == Suggestion for updating dataset Add maximum diversity of both noise and spike clusters (i.e. if we have a total of 2000 neurons, and space for 100,000 waveforms, then every neuron should contribute 100,000/2000 waveforms if possible) ############################################################ ## Integration ############################################################ Aimed at being integrated into blech_clust/blech_process.py, prior to actually performing clustering == Method of operation: - Classifier will be trained and stored in central location - Each time a user initiates sorting, classifier will be checked for updates and downloaded as needed, then run on the local computer ############################################################ ## Future Challenges ############################################################ - Dealing with waveforms of different lengths 1- Either have multiple models, 2- Or standardize waveform length ** Best waveform snapshot can be empirically determined - Getting more labelled data for "not spikes" - Approches: - Adding during spike sorting - Using semi-supervised methods to iteratively label more data ############################################################ ## Experimentation, Model Registry, Data Availability ############################################################ Experimentation and model + data tracking is done on Neptune.ai. These details are not currently available publicly. Dataset used here can be accessed at https://drive.google.com/drive/folders/1i1WPL7gt0ckvpuGVoZKfnu27bRRVUQEX?usp=sharing
About
Classifier for semi-automated spike-sorting and channel recommendation
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published