forked from idiap/emorec
-
Notifications
You must be signed in to change notification settings - Fork 0
Emotion-based Recommendation Generator
License
nik0spapp/emorec
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
############################################################################ Emotion-Based Recommendation Generator (EMORec v1.0) ############################################################################ README: ======= A Python library which performs emotion-based analysis and recommendation using a multiple-instance regression algorithm for a set of multimedia items described by transcripts. The algorithm is trained over 1200 TED talks using the original human- made transcripts and the corresponding community emotion labels. The library can be used in command line or directly in a Python program. It takes as input a JSON file which contains an array of dictionaries that describe the metadata of multimedia items and generates an output JSON file which contains the same items augmented with the following attributes: emotion_classes The class names of 12 TED community emotion labels emotion_scores Estimated values for 12 TED community emotion labels emotion_rec Recommended items based on these emotions emotion_rec_scores Confidence of the recommended item emotion_segments Textual segments that were used text The actual textual content of the segment start_time Starting time of the segment end_time Ending time of the segment relevance_scores Relevance which reveals the contribution of the segment to the prediction of the 14 emotion dimensions. FILES: ====== The library co 5ED7 ntains the following files: ap_weights.py Data class for items (text extraction, preprocessing) crls.py Vector space class supporting TF-IDF, LSI, RP and LDA generate.py Main class responsible for generating recommendations data/ Data to be used for training models/ Pre-trained regression models on TED for emotion prediction parameters/ Optimal values obtained from cross-validation to be used for training and prediction USAGE: ====== USAGE: python generate.py -input=<path> -output=<path> -input Path location of the input file in JSON format -output Path location of the output file in JSON format EXAMPLE: ======== $ python generate.py --input=input.json --output=output.json --debug {'--debug': True, '--display': False, '--help': False, '--input': 'input.json', '--output': 'output.json', '--version': False} [+] Loading items:....................................[OK] [+] Modeling emotions: -> Unconvincing...............................[OK] -> Fascinating................................[OK] -> Persuasive.................................[OK] -> Ingenious..................................[OK] -> Longwinded.................................[OK] -> Funny......................................[OK] -> Inspiring..................................[OK] -> Jaw-dropping...............................[OK] -> Courageous.................................[OK] -> Beautiful..................................[OK] -> Confusing..................................[OK] -> Obnoxious..................................[OK] [+] Generating recommendations........................[OK] [+] Saving to output file.............................[OK] [x] Finished. DEPENDENCIES: ============ 1) Install python: http://www.python.org/getit/ 2) Install pip: http://www.pip-installer.org/en/latest/installing.html 3) Then: $ pip install docopt $ pip install json $ pip install pyyaml $ pip install numpy $ pip install scipy $ pip install gensim $ pip install nltk $ python >>> import nltk >>> nltk.download() TROUBLESHOOTING: ================ Q: How can I use the library with items stored in other formats than JSON? A: You have to convert your file to JSON. Q: How can I use the library directly inside a Python program? A: Simply import the library in Python and initialize a generator object with the item dictionary of your preference. Q: Is there any attribute that is required to be present in the item metadata? A: Yes the 'id' attribute is mandatory. CONTACT: ======== Nikolaos Pappas Idiap Research Institute Centre du Parc, CH 1920 Martigny, Switzerland E-mail: nikolaos.pappas@idiap.ch Website: http://people.idiap.ch/npappas/ --- Last update: 8 Jul, 2014
About
Emotion-based Recommendation Generator
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- OpenEdge ABL 99.9%
- Python 0.1%