8000 GitHub - nf-core/sarek at dev
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ sarek Public

Analysis pipeline to detect germline or somatic variants (pre-processing, variant calling and annotation) from WGS / targeted sequencing

License

Notifications You must be signed in to change notification settings

nf-core/sarek

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nf-core/sarek

GitHub Actions CI Status GitHub Actions Linting Status AWS CI nf-test Cite with Zenodo nf-test

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on Slack Follow on Bluesky Follow on Mastodon Watch on YouTube

Introduction

nf-core/sarek is a workflow designed to detect variants on whole genome or targeted sequencing data. Initially designed for Human, and Mouse, it can work on any species with a reference genome. Sarek can also handle tumour / normal pairs and could include additional relapses.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

It's listed on Elixir - Tools and Data Services Registry and Dockstore.

Pipeline summary

Depending on the options and samples provided, the pipeline can currently perform the following:

  • Form consensus reads from UMI sequences (fgbio)
  • Sequencing quality control and trimming (enabled by --trim_fastq) (FastQC, fastp)
  • Map Reads to Reference (BWA-mem, BWA-mem2, dragmap or Sentieon BWA-mem)
  • Process BAM file (GATK MarkDuplicates, GATK BaseRecalibrator and GATK ApplyBQSR or Sentieon LocusCollector and Sentieon Dedup)
  • Experimental Feature: Use GPU-accelerated parabricks implementation as alternative to "Map Reads to Reference" + "Process BAM file" (--aligner parabricks)
  • Summarise alignment statistics (samtools stats, mosdepth)
  • Variant calling (enabled by --tools, see compatibility):
    • ASCAT
    • CNVkit
    • Control-FREEC
    • DeepVariant
    • freebayes
    • GATK HaplotypeCaller
    • GATK Mutect2
    • indexcov
    • Lofreq
    • Manta
    • mpileup
    • MSIsensor-pro
    • MuSE
    • Sentieon Haplotyper
    • Strelka2
    • TIDDIT
  • Post-variant calling options:
    • BCFtools concat for germline vcfs
    • Experimental Feature BCFtools norm for all vcfs
  • Variant filtering and annotation (SnpEff, Ensembl VEP, BCFtools annotate)
  • Summarise and represent QC (MultiQC)

Usage