mbrs is a library for minimum Bayes risk (MBR) decoding.
Paper | Reference docs | Citation | Release notes
You can install from PyPi:
pip install mbrs
For developers, it can be installed from the source.
git clone https://github.com/naist-nlp/mbrs.git
cd mbrs/
pip install ./
For uv users:
git clone https://github.com/naist-nlp/mbrs.git
cd mbrs/
uv sync
mbrs provides two interfaces: command-line interface (CLI) and Python API.
Command-line interface can run MBR decoding from command-line. Before
running MBR decoding, you can generate hypothesis sentences with
mbrs-generate
:
mbrs-generate \
sources.txt \
--output hypotheses.txt \
--lang_pair en-de \
--model facebook/m2m100_418M \
--num_candidates 1024 \
--sampling eps --epsilon 0.02 \
--batch_size 8 --sampling_size 8 --fp16 \
--report_format rounded_outline
Beam search can also be used by replacing
--sampling eps --epsilon 0.02
with --beam_size 10
.
Next, MBR decoding and other decoding methods can be executed with
mbrs-decode
. This example regards the hypothesis set as the
pseudo-reference set.
mbrs-decode \
hypotheses.txt \
--num_candidates 1024 \
--nbest 1 \
--source sources.txt \
--references hypotheses.txt \
--output translations.txt \
--report report.txt --report_format rounded_outline \
--decoder mbr \
--metric comet \
--metric.model Unbabel/wmt22-comet-da \
--metric.batch_size 64 --metric.fp16 true
You can pass the arguments using a configuration yaml file via
--config_path
option. See
docs for the
details.
Finally, you can evaluate the score with mbrs-score
:
mbrs-score \
hypotheses.txt \
--sources sources.txt \
--references hypotheses.txt \
--format json \
--metric bleurt \
--metric.batch_size 64 --metric.fp16 true
This is the example of COMET-MBR via Python API.
from mbrs.metrics import MetricCOMET
from mbrs.decoders import DecoderMBR
SOURCE = "ありがとう"
HYPOTHESES = ["Thanks", "Thank you", "Thank you so much", "Thank you.", "thank you"]
# Setup COMET.
metric_cfg = MetricCOMET.Config(
model="Unbabel/wmt22-comet-da",
batch_size=64,
fp16=True,
)
metric = MetricCOMET(metric_cfg)
# Setup MBR decoding.
decoder_cfg = DecoderMBR.Config()
decoder = DecoderMBR(decoder_cfg, metric)
# Decode by COMET-MBR.
# This example regards the hypotheses themselves as the pseudo-references.
# Args: (hypotheses, pseudo-references, source)
output = decoder.decode(HYPOTHESES, HYPOTHESES, source=SOURCE, nbest=1)
print(f"Selected index: {output.idx}")
print(f"Output sentence: {output.sentence}")
print(f"Expected score: {output.score}")
Currently, the following metrics are supported:
- BLEU (Papineni et al., 2002):
bleu
- TER (Snover et al.,
2006):
ter
- chrF (Popović et al., 2015):
chrf
- COMET (Rei et al.,
2020):
comet
- COMETkiwi (Rei et al.,
2022):
cometkiwi
- XCOMET (Guerreiro et al., 2023):
xcomet
- XCOMET-lite (Larionov et al., 2024):
xcomet
with--metric.model="myyycroft/XCOMET-lite"
- BLEURT (Sellam et al.,
2020):
bleurt
(thanks to @lucadiliello) - MetricX (Juraska et al., 2023;
Juraska et al., 2024):
metricx
- BERTScore (Zhang et al., 2020):
bertscore
The following decoding methods are implemented:
- N-best reranking:
rerank
- MBR decoding:
mbr
Specifically, the following methods of MBR decoding are included:
- Expectation estimation:
- Monte Carlo estimation (Eikema and Aziz, 2020; Eikema and Aziz, 2022)
- Model-based estimation (Jinnai et al.,
2024):
--reference_lprobs
option
- Efficient methods:
- Confidence-based pruning (Cheng and Vlachos,
2023) :
pruning_mbr
- Reference aggregation (DeNero et al.,
2009; Vamvas and Sennrich,
2024):
aggregate_mbr
- N-gram aggregation on BLEU (DeNero et al., 2009)
- N-gram aggregation on chrF (Vamvas and Sennrich, 2024)
- Embedding aggregation on COMET (Vamvas and Sennrich, 2024; Deguchi et al., 2024)
- Centroid-based MBR (Deguchi et al.,
2024):
centroid_mbr
- Probabilistic MBR (Trabelsi et al.,
2024):
probabilistic_mbr
- Confidence-based pruning (Cheng and Vlachos,
2023) :
The final output list is selected according to these selectors:
- N-best selection:
nbest
- Diverse selection (Jinnai et al., 2024):
diverse
- mbr
- Highly integrated with huggingface
transformers by
customizing
generate()
method of model implementation. - If you are looking for an MBR decoding library that is fully integrated into transformers, this might be a good choice.
- Our mbrs works standalone; thus, not only transformers but also fairseq or LLM outputs via API can be used.
- Highly integrated with huggingface
transformers by
customizing
If you use this software, please cite:
@inproceedings{deguchi-etal-2024-mbrs,
title = "mbrs: A Library for Minimum {B}ayes Risk Decoding",
author = "Deguchi, Hiroyuki and
Sakai, Yusuke and
Kamigaito, Hidetaka and
Watanabe, Taro",
editor = "Hernandez Farias, Delia Irazu and
Hope, Tom and
Li, Manling",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-demo.37",
pages = "351--362",
}
This library is mainly developed by Hiroyuki Deguchi and published under the MIT-license.