8000 GitHub - nussl/cookiecutter: A cookiecutter for nussl experiments.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

nussl/cookiecutter

{"props":{"initialPayload":{"allShortcutsEnabled":false,"path":"/","repo":{"id":264006548,"defaultBranch":"master","name":"cookiecutter","ownerLogin":"nussl","currentUserCanPush":false,"isFork":false,"isEmpty":false,"createdAt":"2020-05-14T19:29:16.000Z","ownerAvatar":"https://avatars.githubusercontent.com/u/58051031?v=4","public":true,"private":false,"isOrgOwned":true},"currentUser":null,"refInfo":{"name":"master","listCacheKey":"v0:1589492400.0","canEdit":false,"refType":"branch","currentOid":"5df8512592778ea7155b05e3e4b54676227968b0"},"tree":{"items":[{"name":"{{cookiecutter.repo_name}}","path":"{{cookiecutter.repo_name}}","contentType":"directory"},{"name":".gitignore","path":".gitignore","contentType":"file"},{"name":"LICENSE","path":"LICENSE","contentType":"file"},{"name":"README.md","path":"README.md","contentType":"file"},{"name":"cookiecutter.json","path":"cookiecutter.json","contentType":"file"}],"templateDirectorySuggestionUrl":null,"readme":null,"totalCount":5,"showBranchInfobar":false},"fileTree":null,"fileTreeProcessingTime":null,"foldersToFetch":[],"treeExpanded":false,"symbolsExpanded":false,"isOverview":true,"overview":{"banners":{"shouldRecommendReadme":false,"isPersonalRepo":false,"showUseActionBanner":false,"actionSlug":null,"actionId":null,"showProtectBranchBanner":false,"publishBannersInfo":{"dismissActionNoticePath":"/settings/dismiss-notice/publish_action_from_repo","releasePath":"/nussl/cookiecutter/releases/new?marketplace=true","showPublishActionBanner":false},"interactionLimitBanner":null,"showInvitationBanner":false,"inviterName":null,"actionsMigrationBannerInfo":{"releaseTags":[],"showImmutableActionsMigrationBanner":false,"initialMigrationStatus":null}},"codeButton":{"contactPath":"/contact","isEnterprise":false,"local":{"protocolInfo":{"httpAvailable":true,"sshAvailable":null,"httpUrl":"https://github.com/nussl/cookiecutter.git","showCloneWarning":null,"sshUrl":null,"sshCertificatesRequired":null,"sshCertificatesAvailable":null,"ghCliUrl":"gh repo clone nussl/cookiecutter","defaultProtocol":"http","newSshKeyUrl":"/settings/ssh/new","setProtocolPath":"/users/set_protocol"},"platformInfo":{"cloneUrl":"https://desktop.github.com","showVisualStudioCloneButton":false,"visualStudioCloneUrl":"https://windows.github.com","showXcodeCloneButton":false,"xcodeCloneUrl":"xcode://clone?repo=https%3A%2F%2Fgithub.com%2Fnussl%2Fcookiecutter","zipballUrl":"/nussl/cookiecutter/archive/refs/heads/master.zip"}},"newCodespacePath":"/codespaces/new?hide_repo_select=true\u0026repo=264006548"},"popovers":{"rename":null,"renamedParentRepo":null},"commitCount":"6","overviewFiles":[{"displayName":"README.md","repoName":"cookiecutter","refName":"master","path":"README.md","preferredFileType":"readme","tabName":"README","richText":"\u003carticle class=\"markdown-body entry-content container-lg\" itemprop=\"text\"\u003e\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch1 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eIntroduction\u003c/h1\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003eA boilerplate for reproducible and transparent computer audition research that leverages\n\u003ca href=\"https://interactiveaudiolab.github.io/nussl/\" rel=\"nofollow\"\u003enussl\u003c/a\u003e, a source separation library. This\nproject provides boilerplate code for training neural network models to separate mixtures\ncontaining multiple speakers, music, and environmental sounds. It is easy to add and\ntrain new models or datasets (GPU sold separately). The goal of this project is to enable\nfurther reproducibility within the source separation community.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003eTo start a new project:\u003c/p\u003e\n\u003cp dir=\"auto\"\u003e\u003ccode\u003ecookiecutter gh:pseeth/cookiecutter-nussl\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eDocumentation\u003c/h2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003eThe documentation is \u003ca href=\"https://pseeth.github.io/cookiecutter-nussl/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. It includes\nguides for getting started, training models, creating datasets, and API documentation.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eFeatures\u003c/h2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: Features\" href=\"#features\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003eThe following models can be trained:\u003c/p\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003eMask Inference\u003c/li\u003e\n\u003cli\u003eDeep Clustering\u003c/li\u003e\n\u003cli\u003eChimera\u003c/li\u003e\n\u003cli\u003eTasNet\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp dir=\"auto\"\u003eon the following datasets:\u003c/p\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003eMUSDB18\u003c/li\u003e\n\u003cli\u003eMIR-1k\u003c/li\u003e\n\u003cli\u003eSlakh\u003c/li\u003e\n\u003cli\u003eWSJ0-mix2\u003c/li\u003e\n\u003cli\u003eWham!\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp dir=\"auto\"\u003eThis project utilizes building block components from \u003ccode\u003enussl\u003c/code\u003e for input/output\n(reading/writing audio, STFT/iSTFT, masking, etc.), and for neural network construction\n(recurrent networks, convolutional networks, etc) to train models with minimal setup.\nThe main source separation library, \u003ccode\u003enussl\u003c/code\u003e, contains many pre-trained models trained\nusing this code. See the \u003ca href=\"http://nussl.ci.northwestern.edu/\" rel=\"nofollow\"\u003eExternal File Zoo (EFZ)\u003c/a\u003e\nfor trained models.\u003c/p\u003e\n\u003cp dir=\"auto\"\u003eThis project uses\n\u003ca href=\"https://cookiecutter.readthedocs.io/en/latest/readme.html\" rel=\"nofollow\"\u003ecookiecutter\u003c/a\u003e.\nCookiecutter is a \u003cem\u003elogical, reasonably standardized, but flexible project structure\nfor doing and sharing research.\u003c/em\u003e This project and \u003ccode\u003enussl\u003c/code\u003e are both built upon\nthe \u003ca href=\"https://pytorch.org/\" rel=\"nofollow\"\u003ePyTorch\u003c/a\u003e machine learning framework, as such, building new\ncomponents is as simple as adding new PyTorch code, though writing python is not required.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003eInstall \u003ccode\u003ecookiecutter\u003c/code\u003e command line: \u003ccode\u003epip install cookiecutter\u003c/code\u003e (generates boilerplate\ncode)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003eThis project is licensed under the terms of the \u003ca href=\"/nussl/cookiecutter/blob/master/LICENSE\"\u003eMIT License\u003c/a\u003e\u003c/p\u003e\n\u003c/article\u003e","loaded":true,"timedOut":false,"errorMessage":null,"headerInfo":{"toc":[{"level":1,"text":"Introduction","anchor":"introduction","htmlText":"Introduction"},{"level":2,"text":"Usage","anchor":"usage","htmlText":"Usage"},{"level":2,"text":"Documentation","anchor":"documentation","htmlText":"Documentation"},{"level":2,"text":"Features","anchor":"features","htmlText":"Features"},{"level":2,"text":"Requirements","anchor":"requirements","htmlText":"Requirements"},{"level":2,"text":"License","anchor":"license","htmlText":"License"}],"siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2Fnussl%2Fcookiecutter"}},{"displayName":"LICENSE","repoName":"cookiecutter","refName":"master","path":"LICENSE","preferredFileType":"license","tabName":"MIT","richText":null,"loaded":false,"timedOut":false,"errorMessage":null,"headerInfo":{"toc":null,"siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2Fnussl%2Fcookiecutter"}}],"overviewFilesProcessingTime":0}},"appPayload":{"helpUrl":"https://docs.github.com","findFileWorkerPath":"/assets-cdn/worker/find-file-worker-7d7eb7c71814.js","findInFileWorkerPath":"/assets-cdn/worker/find-in-file-worker-708ec8ade250.js","githubDevUrl":null,"enabled_features":{"copilot_workspace":null,"code_nav_ui_events":false,"react_blob_overlay":false,"accessible_code_button":true,"github_models_repo_integration":false}}}}

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

A boilerplate for reproducible and transparent computer audition research that leverages nussl, a source separation library. This project provides boilerplate code for training neural network models to separate mixtures containing multiple speakers, music, and environmental sounds. It is easy to add and train new models or datasets (GPU sold separately). The goal of this project is to enable further reproducibility within the source separation community.

Usage

To start a new project:

cookiecutter gh:pseeth/cookiecutter-nussl

Documentation

The documentation is here. It includes guides for getting started, training models, creating datasets, and API documentation.

Features

The following models can be trained:

  • Mask Inference
  • Deep Clustering
  • Chimera
  • TasNet

on the following datasets:

  • MUSDB18
  • MIR-1k
  • Slakh
  • WSJ0-mix2
  • Wham!

This project utilizes building block components from nussl for input/output (reading/writing audio, STFT/iSTFT, masking, etc.), and for neural network construction (recurrent networks, convolutional networks, etc) to train models with minimal setup. The main source separation library, nussl, contains many pre-trained models trained using this code. See the External File Zoo (EFZ) for trained models.

This project uses cookiecutter. Cookiecutter is a logical, reasonably standardized, but flexible project structure for doing and sharing research. This project and nussl are both built upon the PyTorch machine learning framework, as such, building new components is as simple as adding new PyTorch code, though writing python is not required.

Requirements

  • Install cookiecutter command line: pip install cookiecutter (generates boilerplate code)

License

This project is licensed under the terms of the MIT License

About

A cookiecutter for nussl experiments.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0