10000 Releases · numpy/numpy · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Releases: numpy/numpy

v2.2.5 (Apr 19, 2025)

19 Apr 23:36
v2.2.5
7be8c1f
Compare
Choose a tag to compare

NumPy 2.2.5 Release Notes

NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Baskar Gopinath +
  • Nathan Goldbaum
  • Nicholas Christensen +
  • Sayed Adel
  • karl +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #28545: MAINT: Prepare 2.2.x for further development
  • #28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
  • #28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
  • #28585: TYP: fix typing errors in _core.strings
  • #28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
  • #28632: BUG: Set writeable flag for writeable dlpacks.
  • #28633: BUG: Fix crackfortran parsing error when a division occurs within...
  • #28650: TYP: fix ndarray.tolist() and .item() for unknown dtype
  • #28654: BUG: fix deepcopying StringDType arrays (#28643)
  • #28661: TYP: Accept objects that write() to str in savetxt
  • #28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
  • #28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
  • #28683: TYP: add missing "b1" literals for dtype[bool]
  • #28705: TYP: Fix false rejection of NDArray[object_].__abs__()
  • #28706: TYP: Fix inconsistent NDArray[float64].__[r]truediv__ return...
  • #28723: TYP: fix string-like ndarray rich comparison operators
  • #28758: TYP: some [arg]partition fixes
  • #28772: TYP: fix incorrect random.Generator.integers return type
  • #28774: TYP: fix count_nonzero signature

Checksums

MD5

3a5d0889d6d7951f44bc6f7a03fa30c6  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
bcf9f4e768b070e17b2635f422a6e27d  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
e82c8fa47a65bb5c2c83295f549dab12  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
a5511a995c0f79a8b9a81f2b50e9f692  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
72bfc1f98238a8e4ba08999e61111e0e  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
146c83a5b8099d8d2607392b2ef7fedf  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ebdc80b54b008a10575e5d7bbb613f5  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
97efde6443da8f9280a5fc2614a087e5  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
c143f352206cec535b41b6b1d34c5898  numpy-2.2.5-cp310-cp310-win32.whl
0b17fbbf584785f675f1c5b24a00ff93  numpy-2.2.5-cp310-cp310-win_amd64.whl
58532622d7eff69a3c71c1ae89dea070  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
0d002c733bb02debe0b15de5ba872d1e  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
ff0c736c60be96506806061ace2251a1  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
4febdec973c4405fd08ef35e0c130de1  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
0bf4e457c612e565420e135458e70fe0  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a43b608ad15ebdc0960611497205d598  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7b4b1afd412149a9af7c25d7346fade8  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
a1e70be013820f92dbfd4796fc4044bb  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
73344e05a6fec0b38183363b4a026252  numpy-2.2.5-cp311-cp311-win32.whl
b7d5fdd23057c58d15c84eef6bfedb55  numpy-2.2.5-cp311-cp311-win_amd64.whl
801b11bb546aac2d92d7b3d5d6c90e86  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
68dc4298cad9405ad30cfb723be4ae48  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
c31c872e0fa8df5ed7f91882621a925f  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
179dfa545c32c44b77cf8db3b973785f  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
4562513ff2f1e3f31d66b8e435000141  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c80a2d8aab1a4d6a66f3fca2f0744744  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e363e0d8c116522d55b0ddd0cbf2de67  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
d31d443270c76b7238ece2f87b048d21  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
bf469fe048fa4ed75a5d8725297e283a  numpy-2.2.5-cp312-cp312-win32.whl
069b832aa15b6a815497135e7fa8cae8  numpy-2.2.5-cp312-cp312-win_amd64.whl
b2cf059c831cbcfdb4044613a1e5bc8d  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
70bcb93e55ff0f6602636602e0834607  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
00c4938d67fd5b658ad92ac26fbe9cab  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
0ca38aa51874b9252a2c9d85f81dcd07  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
6062cf707b8bc07a1600af0991a0a88e  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
62c1cf7de0327546f3a1e3852de640d3  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab3ad3390396552f76160139cc528784  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
d258ba55c9a3936fa0c113cac8bbc0cc  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
59bb7e1acb81fc4a02c3b791e110f01e  numpy-2.2.5-cp313-cp313-win32.whl
2e5728a9e5c6405d3a22138e4dd7019f  numpy-2.2.5-cp313-cp313-win_amd64.whl
d315521ec7275d0341787f2450e57e55  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
17018c7c259ae81cf2ca4f58523d7d1c  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
ef6fd6a9c6a07db004a272b82f0ea710  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
07b2baf70b84b44ca6924794d9c7e431  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
a2fb1ed562d2b6da091d980c7486d113  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
22fa9137283f463436d7b20a220071cd  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b0ae924e4834155eb5ac159ae611c292  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c7a8351484f2df9a499c68f1ac73121c  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1da753e4127a0bdcdfbfa6639568057e  numpy-2.2.5-cp313-cp313t-win32.whl
a8c869efc0888f214239e5c4f0e6acfb  numpy-2.2.5-cp313-cp313t-win_amd64.whl
7255b93f38e7d54a59d6798182f24c6a  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
6743ce025de6c245b03ca8511b306503  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
5abbeec4ff2add1c46f8779f730c73fa  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e2e01f02d05e111ef2b104d1b3afad1  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
df2e46b468f9fdf06b13b04eca9a723f  numpy-2.2.5.tar.gz

SHA256

1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88  numpy-2.2.5-cp310-cp310-win32.whl
e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7  numpy-2.2.5-cp310-cp310-win_amd64.whl
c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
f5045039100ed58fa817a6227a356240...
Read more

2.2.4 (Mar 16, 2025)

16 Mar 18:35
v2.2.4
3b37785
Compare
Choose a tag to compare

NumPy 2.2.4 Release Notes

NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3
release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.

This release supports Python versions 3.10-3.13.

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar
  • Andrej Zhilenkov
  • Andrew Nelson
  • Charles Harris
  • Giovanni Del Monte
  • Guan Ming(Wesley) Chiu +
  • Jonathan Albrecht +
  • Joren Hammudoglu
  • Mark Harfouche
  • Matthieu Darbois
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg
  • Tyler Reddy
  • lvllvl +

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #28333: MAINT: Prepare 2.2.x for further development.
  • #28348: TYP: fix positional- and keyword-only params in astype, cross...
  • #28377: MAINT: Update FreeBSD version and fix test failure
  • #28379: BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows
  • #28385: BUG: Make np.nonzero threading safe
  • #28420: BUG: safer bincount casting (backport to 2.2.x)
  • #28422: BUG: Fix building on s390x with clang
  • #28423: CI: use QEMU 9.2.2 for Linux Qemu tests
  • #28424: BUG: skip legacy dtype multithreaded test on 32 bit runners
  • #28435: BUG: Fix searchsorted and CheckFromAny byte-swapping logic
  • #28449: BUG: sanity check __array_interface__ number of dimensions
  • #28510: MAINT: Hide decorator from pytest traceback
  • #28512: TYP: Typing fixes backported from #28452, #28491, #28494
  • #28521: TYP: Backport fixes from #28505, #28506, #28508, and #28511
  • #28533: TYP: Backport typing fixes from main (2)
  • #28534: TYP: Backport typing fixes from main (3)
  • #28542: TYP: Backport typing fixes from main (4)

Checksums

MD5

935928cbd2de140da097f6d5f4a01d72  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
bf7fd01bb177885e920173b610c195d9  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
826e52cd898567a0c446113ab7a7b362  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
9982a91d7327aea541c24aff94d3e462  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
5bdf5b63f4ee01fa808d13043b2a2275  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
677b3031105e24eaee2e0e57d7c2a306  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d857867787fe1eb236670e7fdb25f414  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
a5aff3a7eb2923878e67fbe1cd04a9e9  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
e00bd3ac85d8f34b46b7f97a8278aeb3  numpy-2.2.4-cp310-cp310-win32.whl
e5cb2a5d14bccee316bb73173be125ec  numpy-2.2.4-cp310-cp310-win_amd64.whl
494f60d8e1c3500413bd093bb3f486ea  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
a886a9f3e80a60ce6ba95b431578bbca  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
889f3b507bab9272d9b549780840a642  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
059788668d2c4e9aace4858e77c099ed  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
db9ae978afb76a4bf79df0657a66aaeb  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e36963a4c177157dc7b0775c309fa5a8  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3603e683878b74f38e5617f04ff6a369  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
afbc410fb9b42b19f4f7c81c21d6777f  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
33ff8081378188894097942f80c33e26  numpy-2.2.4-cp311-cp311-win32.whl
5b11fe8d26318d85e0bc577a654f6643  numpy-2.2.4-cp311-cp311-win_amd64.whl
91121787f396d3e98210de8b617e5d48  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
c524d1020b4652aacf4477d1628fa1ba  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
eb08f551bdd6772155bb39ac0da47479  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
7cb37fc9145d0ebbea5666b4f9ed1027  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c4452a5dc557c291904b5c51a4148237  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd23a12ead870759f264160ab38b2c9d  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07b44109381985b48d1eef80feebc5ad  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
95f1a27d33106fa9f40ee0714681c840  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
507e550a55b19dedf267b58a487ba0bc  numpy-2.2.4-cp312-cp312-win32.whl
be21ccbf8931e92ba1fdb2dc1250bf2a  numpy-2.2.4-cp312-cp312-win_amd64.whl
e94003c2b65d81b00203711c5c42fb8e  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
cf781fd5412ffd826e0436883452cc17  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
92c9a30386a64f2deddad1db742bd296  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
7fd16554fa0a15b7f99b1fabf1c4592c  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
9293b0575a902b2d55c35567dee7679e  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9970699bd95e8a64a562b1e6328b83d0  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e8597c611a919a8e88229d6889c1f86e  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
329288501f012606605bdbed368e58e9  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
04bf8d0f6a9e279ab01df4ed0b4aeee1  numpy-2.2.4-cp313-cp313-win32.whl
66801fe84a436b7ed3be6e0082b86917  numpy-2.2.4-cp313-cp313-win_amd64.whl
3e2f31e01b45cd16a87b794477de3714  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
7504018213a3a8fea7173e2c1d0fcfd1  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
e299021397c3cdb941b7ffe77cf0fefe  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
1cc2731a246079bcab361179f38e7ccb  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
e6eccf936d25c9eda9df1a4d50ae2fdc  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ba825efd05cca6d56c3dca9f7f1f88e7  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
369eebec47c9c27cb4841a13e9522167  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
554dbfa52988d01f715cbe8d4da4b409  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
811d25a008c68086c9382487e9a4127a  numpy-2.2.4-cp313-cp313t-win32.whl
893fd2fdd42f386e300bee885bbb7778  numpy-2.2.4-cp313-cp313t-win_amd64.whl
65e284546c5ee575eca0a3726c0a1d98  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e4e73511eac8f1a10c6abbd6fa2fa0aa  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a884ed5263b91fa87b5e3d14caf955a5  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7330087a6ad1527ae20a495e2fb3b357  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
56232f4a69b03dd7a87a55fffc5f2ebc  numpy-2.2.4.tar.gz

SHA256

8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a  numpy-2.2.4-cp310-cp310-win32.whl
0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542  numpy-2.2.4-cp310-cp310-win_amd64.whl
e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09  numpy-2.2.4-cp311-cp311-win32.whl
f7de08cbe5551911886d1ab60de...
Read more

2.2.3 (Feb 13, 2025)

13 Feb 17:26
v2.2.3
a274561
Compare
Choose a tag to compare

NumPy 2.2.3 Release Notes

NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2
release. The majority of the changes are typing improvements and fixes
for free threaded Python. Both of those areas are still under
development, so if you discover new problems, please report them.

This release supports Python versions 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !amotzop
  • Charles Harris
  • Chris Sidebottom
  • Joren Hammudoglu
  • Matthew Brett
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sebastian Berg
  • Yakov Danishevsky +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #28185: MAINT: Prepare 2.2.x for further development
  • #28201: BUG: fix data race in a more minimal way on stable branch
  • #28208: BUG: Fix from_float_positional errors for huge pads
  • #28209: BUG: fix data race in np.repeat
  • #28212: MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should...
  • #28224: MAINT: update highway to latest
  • #28236: BUG: Add cpp atomic support (#28234)
  • #28237: BLD: Compile fix for clang-cl on WoA
  • #28243: TYP: Avoid upcasting float64 in the set-ops
  • #28249: BLD: better fix for clang / ARM compiles
  • #28266: TYP: Fix timedelta64.__divmod__ and timedelta64.__mod__...
  • #28274: TYP: Fixed missing typing information of set_printoptions
  • #28278: BUG: backport resource cleanup bugfix from gh-28273
  • #28282: BUG: fix incorrect bytes to stringdtype coercion
  • #28283: TYP: Fix scalar constructors
  • #28284: TYP: stub numpy.matlib
  • #28285: TYP: stub the missing numpy.testing modules
  • #28286: CI: Fix the github label for TYP: PR's and issues
  • #28305: TYP: Backport typing updates from main
  • #28321: BUG: fix race initializing legacy dtype casts
  • #28324: CI: update test_moderately_small_alpha

Checksums

MD5

9cd8b5e358f89016f403a6c1a27e7e87  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
2818f5a9efcfc3bb6bf657137df26046  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
6d65c6a336cfb69fe4ddd756cad73d55  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
7f4cf33c634b33f633d4bf47f560a86d  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
3c04024badd42bfcc68c14f106efa93f  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
07658df1de0e1d3721de0aacff4313cd  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e753fc4b7c879b29442ee9bab25eddd  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
d1811f1988d88b00825bc6e943d8e22d  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
b5fe91363c16001ea30cbd5befbb0555  numpy-2.2.3-cp310-cp310-win32.whl
44dfe1df1640e4fe762bedad57cd7165  numpy-2.2.3-cp310-cp310-win_amd64.whl
6156418f596620b00a3c221baef02476  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
97b925bac245aad1297d22ad3cfaa74c  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
3f05819fcb71df1d3093e5d1c041a4e9  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
f6763893ba9a5739fefa0929fd152db2  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
e93cf6ed4e1a3f9a8009ee7f2fcb0da8  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
851dcbcbe90212c385dcdac1614cca83  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b27cf1d6319f70370f4b0af10c03f5c  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
28d20c95ff23d27ae639b4960df777ec  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
559fefe30c0043a088adeca90231b382  numpy-2.2.3-cp311-cp311-win32.whl
5e32a1cc3dcfe729f675784a53e4d553  numpy-2.2.3-cp311-cp311-win_amd64.whl
12134dcf62b2bca2eeebb7bbc45c2a71  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
c72318236531d3ca61d229eaf96f7d04  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
1b807acc844c2ba5be7bc7586d4a3a6b  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
810d4908371bb2f08b0c7b16d3f05970  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
bb918cedd0931cb68af9e77096dedf54  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
92c6c6c5b22b207425b329f061bd18fa  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
10d48fb9d86280db1afe7224b15a51af  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
a73da0434a971b21d8a9c0596015d629  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
c5f1e734c7d872e2f9af71d32e62d59c  numpy-2.2.3-cp312-cp312-win32.whl
884c1a89844f539ab15b7016a43d231c  numpy-2.2.3-cp312-cp312-win_amd64.whl
3a2de7f886cb756cf8d0375a36721926  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
c1fe5b6a9015c2877647419caa009be0  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
bb3f3a69219bbcdb719bbe38e4e69f79  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
8158c2e980a1cbfb4d98ff3a273bb2e9  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
4d3d9b0c14db955e4b1aa1a1971d2def  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6575308269513900c94803258b89ac83  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
945b91c2093fed2a1f34597fc66e5a35  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
c5867508607f75ed23426315a7ad86d7  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
5a1497c262d9aa52ce6859a12a54ebbc  numpy-2.2.3-cp313-cp313-win32.whl
69c98e036d59eb74e4620c7649b5d7fc  numpy-2.2.3-cp313-cp313-win_amd64.whl
2535d7c0f98ad848bcf1f48f7c358e41  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
aea9afa69d510ce905b2b8dbf0e33a11  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
cc5aceacd0a44a67cdd2cf8d5a446ca3  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
32eb2ed1e734ea26c90f75b1f5616564  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f1d85f322c3e85ef748c3e5594b94226  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f24ce01ad5c352c76614a12fa5e2319  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62841d4b49c5a0cef2c2ba26a16f6959  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
d7b512f83999d05c47e55b931f2dcdfe  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
1dca2f20e0accc1741e5fb233ecf7dff  numpy-2.2.3-cp313-cp313t-win32.whl
347b71f0db5b49a25ef1ed677e47999b  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3615d13c8c14c323aeda1c07d5a7fd55  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
f7d2ba950c5aa11c100bb6bf202d5799  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
b4336174c843c4943084e17945cd1165  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d856a89e028c393f8125739c56591e0  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
c6ee254bcdf1e2fdb13d87e0ee4166ba  numpy-2.2.3.tar.gz

SHA256

cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094  numpy-2.2.3-cp310-cp310-win32.whl
596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb  numpy-2.2.3-cp310-cp310-win_amd64.whl
16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl...
Read more

2.2.2 (Jan 18, 2025)

19 Jan 00:15
v2.2.2
fd8a68e
Compare
Choose a tag to compare

NumPy 2.2.2 Release Notes

NumPy 2.2.2 is a patch release that fixes bugs found after the 2.2.1
release. The number of typing fixes/updates is notable. This release
supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alicia Boya García +
  • Charles Harris
  • Joren Hammudoglu
  • Kai Germaschewski +
  • Nathan Goldbaum
  • PTUsumit +
  • Rohit Goswami
  • Sebastian Berg

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #28050: MAINT: Prepare 2.2.x for further development
  • #28055: TYP: fix void arrays not accepting str keys in __setitem__
  • #28066: TYP: fix unnecessarily broad integer binop return types (#28065)
  • #28112: TYP: Better ndarray binop return types for float64 &...
  • #28113: TYP: Return the correct bool from issubdtype
  • #28114: TYP: Always accept date[time] in the datetime64 constructor
  • #28120: BUG: Fix auxdata initialization in ufunc slow path
  • #28131: BUG: move reduction initialization to ufunc initialization
  • #28132: TYP: Fix interp to accept and return scalars
  • #28137: BUG: call PyType_Ready in f2py to avoid data races
  • #28145: BUG: remove unnecessary call to PyArray_UpdateFlags
  • #28160: BUG: Avoid data race in PyArray_CheckFromAny_int
  • #28175: BUG: Fix f2py directives and --lower casing
  • #28176: TYP: Fix overlapping overloads issue in 2->1 ufuncs
  • #28177: TYP: preserve shape-type in ndarray.astype()
  • #28178: TYP: Fix missing and spurious top-level exports

Checksums

MD5

749cb2adf8043551aae22bbf0ed3130a  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
bc79fa2e44316b7ce9bacb48a993ed91  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
c6b2caa2bbb645b5950dccb77efb1dbb  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
8c410efac169af880cacbbac8a731658  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
21d165669635a9b680d03b0b4e7f5b98  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a34ef5e7c967136fdc59c822e99f87d6  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a81749effc5160ff8dde7eb2ebe868c4  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
546612d82fae082697879aaf2b985b1b  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
d874e626f58175ad603cb68fda2a4e28  numpy-2.2.2-cp310-cp310-win32.whl
20564a5caeb621061267f9d80c1e7ed0  numpy-2.2.2-cp310-cp310-win_amd64.whl
ef5336ddae73feef891844a205f89b15  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0c8804cb6ebca82b1cf3063b410687  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
1682639d0420a532f8894c4a8685b23d  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
d33d53efc5744b577cb8a6ac9971cfdb  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
c85b92e2ed7ef0eaeb15909ad73aea22  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efa1a587f607a37336c477bed977ea64  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0effe9902e262704a115c6f7095daf7  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
425e0cebeb1c2c91bba42ae195836268  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
57121319a2fbb76eed4b268282ed668e  numpy-2.2.2-cp311-cp311-win32.whl
fdb54e7345ff657d208fbb52469a5861  numpy-2.2.2-cp311-cp311-win_amd64.whl
bdf299e0abc45b5c5113a1cc5505636a  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
30c25784c07965592cf88104b6c02508  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
65e630a0de5403c41a0083198bc14442  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
6d9f50717e7b40f1ebdf139f83cc7504  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
6b092a9280ada70482d44f538752fc0b  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9c273da8438391eab30f6c1c4898be5d  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d619047dcaf041b806a7b59ff0a798d5  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
fa5d0d979104456d7c43a183223c8587  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
3b8689aedff5037cad85b018e2d5e43a  numpy-2.2.2-cp312-cp312-win32.whl
a2340ff05cae7e09f63bfcfd4e75ea87  numpy-2.2.2-cp312-cp312-win_amd64.whl
044e86bd65492af34a59e4109fbeed16  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
7ca0f0e8c8d3d80ec473ec33929c2ae3  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
4b866ad895e007005afe8a29837cf7d6  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
2e6247faabf6d0ac0fafaca0bb405ff8  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
773982551185ae327cdefe416e73acfc  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1c0ecc958a555a8a95c92c1dd7dc2358  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f662eb58b8f711585550d6fdf8afa4f  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
53471186fc990eb22e82a0512b310438  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
6b4d65349c74dd91853a7cc6b5c5786e  numpy-2.2.2-cp313-cp313-win32.whl
33dc5bab2d3f752ef00f81021d68cb5a  numpy-2.2.2-cp313-cp313-win_amd64.whl
0acc5069c5ab4fe3ea7c35956636c462  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
01e3f727594a12eee6d0677113525b96  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
7b1ddabcb187b18caa52055bb2b2dc67  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
a09f5c138ad8c87b9692eea99f344a98  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
289ec315
10000
5aa21c5a161b2d61d2cf3c2d  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6bb3eb03d400ad708942afbfebd07abc  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62f8ef2a5c9e76b0e43851a7bb9c0379  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
59b4b77118f958dd07484686e82b1e7a  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
726b58ec542581c5e46adfd4c5c0fed0  numpy-2.2.2-cp313-cp313t-win32.whl
f2b4eab55a963e8cd4c6c1e573c9a59f  numpy-2.2.2-cp313-cp313t-win_amd64.whl
f6a93eaebee6f9890a4922571141ecb5  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fb457bbe2d231e836d2230b06d4706ca  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
df4c07a48a24621167c12704ba5ac0de  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d1108b9060469eb28bb4a4cffa7b98f  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ac108586d3aeab9e2d0134b744763eb9  numpy-2.2.2.tar.gz

SHA256

7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160  numpy-2.2.2-cp310-cp310-win32.whl
64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014  numpy-2.2.2-cp310-cp310-win_amd64.whl
642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50  numpy-2.2.2-cp311-cp311-win32.whl
da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2  numpy-2.2.2-cp311-cp311-win_amd64.whl
ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a  numpy-2.2.2-cp312-cp312-macosx_1...
Read more

2.2.1 (DEC 21, 2024)

21 Dec 23:03
v2.2.1
7469245
Compare
Choose a tag to compare

NumPy 2.2.1 Release Notes

NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found
after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Simon Altrogge
  • Thomas A Caswell
  • Warren Weckesser
  • Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #27935: MAINT: Prepare 2.2.x for further development
  • #27950: TEST: cleanups
  • #27958: BUG: fix use-after-free error in npy_hashtable.cpp (#27955)
  • #27959: BLD: add missing include
  • #27982: BUG:fix compile error libatomic link test to meson.build
  • #27990: TYP: Fix falsely rejected value types in ndarray.__setitem__
  • #27991: MAINT: Don't wrap #include <Python.h> with extern "C"
  • #27993: BUG: Fix segfault in stringdtype lexsort
  • #28006: MAINT: random: Tweak module code in mtrand.pyx to fix a Cython...
  • #28007: BUG: Cython API was missing NPY_UINTP.
  • #28021: CI: pin scipy-doctest to 1.5.1
  • #28044: TYP: allow None in operand sequence of nditer

Checksums

MD5

d3032be00b974d44aae687fd78a897b4  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
49863a39471cf191402da96512e52cb6  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
31c912e2fa723b877f2d710c26332927  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
95af4f6b620c76f9ccb8c5693c99737d  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
c1b113ad487a3bece6d7a70e0cf70f17  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e93369ddbb637d9d5a820b2bb79588c4  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3de0a2c345541d2c9a322df360ca497  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
e3e62b93245d9e37cc03ec3cfaf68118  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
004063642d3c3792a3f5ff0241a3fa0f  numpy-2.2.1-cp310-cp310-win32.whl
462b0704ebfd79120edfe6431adc57f4  numpy-2.2.1-cp310-cp310-win_amd64.whl
a739a2dfbceaa1140e564424b2a57540  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
91731d46f4ce4b04db512400f4e76ccb  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
93f50db664a6986c2ebed3ceb588f7cc  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
8cc0d82b938d71f45a67c74e07ddc7fd  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
fc7b253096fc566bbcbadfdf6b034f1b  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b88238965c708578f2c198d1c6e2cf70  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df20d649bb023f98e487b229f01e9708  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
e23d2bfbdb1bd1b2872c9e6e15f64dca  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
cce4ebb9afc1470db243c2ab4cc6639b  numpy-2.2.1-cp311-cp311-win32.whl
c96783ee8ad6ce1efee94821929a12f5  numpy-2.2.1-cp311-cp311-win_amd64.whl
0b2024655573f96a595c7f5072205e84  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
22483d8935f5dc128393ad671fde7d8e  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
61d38533acaa90fb24657f089d177a6c  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
ecd4289c703356f5b4fd7e440bf94ce8  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
a05208461ea09079ae569414d82a606c  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c66f10580fa26d1d17b2bdda96a5fc5  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60a01c86b1fc55e4ba8f2b41f690703b  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
4bcac2b7f8510b0a6582b7d8661257be  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
7c24a6a3b5c5b2c53c6807bf06c595c5  numpy-2.2.1-cp312-cp312-win32.whl
dc9f3c1eaade4da63e5f87e878e5805e  numpy-2.2.1-cp312-cp312-win_amd64.whl
9aacdedcb2cb3d6a45dfb823148e01cf  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
8a2598b081c8af4ea6f6bbccc8965882  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
e58b8db1a97599ed02a630eb86616bb9  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
be6871a4edd2cd92b147421b9290e047  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
6d3f141f3a8ecd04e1a1f7c1f89a8ca2  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eba9d71e631521bd1d9882f8bfbc01d2  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07f7ea0a7f9f6ce0ba5e016dff2a91e8  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
a015f42afa15be8b87fc64120c245f18  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
881b9b20e68b317850ad7b6306ac1c51  numpy-2.2.1-cp313-cp313-win32.whl
35bd751636dcea0ca0534ad9dee8057a  numpy-2.2.1-cp313-cp313-win_amd64.whl
7057313b668a4a26b5386203ebc040d9  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
02031b405d028714126c26ffc5772f0e  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
73eb35111b027d6771d9a91eb21ad7ef  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
01f9a5eb7ec872d9682bb6a174897b35  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
9bc363d2782931efa2648b42ce358a4c  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b6492f49b50e892a7134baf2dba9f88d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a1c458a98cd9c7ad63f9c301398f4d63  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
38d2bf31247d9005c7a0197aa992cf1d  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30e6acf4391728d0a3a5e3494bd4a2c8  numpy-2.2.1-cp313-cp313t-win32.whl
2100b60306e75288799fca60bd00b84f  numpy-2.2.1-cp313-cp313t-win_amd64.whl
f975551321147c307bbdff4889061b47  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
cefbc2de3aa5ef518ce652fdaab00c96  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7e379c1d0a5be8e548e35fa7abe1d2c0  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3cba151351656a83e4c84c942cf490e7  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
57c5757508a50d1daefa4b689e9701cb  numpy-2.2.1.tar.gz

SHA256

5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95  numpy-2.2.1-cp310-cp310-win32.whl
b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf  numpy-2.2.1-cp310-cp310-win_amd64.whl
40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd  numpy-2.2.1-cp311-cp311-win32.whl
360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16  numpy-2.2.1-cp311-cp311-win_amd64.whl
694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315...
Read more

2.2.0 (Dec 8, 2024)

08 Dec 16:03
v2.2.0
e7a123b
Compare
Choose a tag to compare

NumPy 2.2.0 Release Notes

The NumPy 2.2.0 release is quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

  • New functions matvec and vecmat, see below.
  • Many improved annotations.
  • Improved support for the new StringDType.
  • Improved support for free threaded Python
  • Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

  • _add_newdoc_ufunc is now deprecated. ufunc.__doc__ = newdoc
    should be used instead.

    (gh-27735)

Expired deprecations

  • bool(np.array([])) and other empty arrays will now raise an error.
    Use arr.size > 0 instead to check whether an array has no
    elements.

    (gh-27160)

Compatibility notes

  • numpy.cov now properly transposes single-row (2d
    array) design matrices when rowvar=False. Previously, single-row
    design matrices would return a scalar in this scenario, which is not
    correct, so this is a behavior change and an array of the
    appropriate shape will now be returned.

    (gh-27661)

New Features

  • New functions for matrix-vector and vector-matrix products

    Two new generalized ufuncs were defined:

    • numpy.matvec - matrix-vector product, treating the
      arguments as stacks of matrices and column vectors,
      respectively.
    • numpy.vecmat - vector-matrix product, treating the
      arguments as stacks of column vectors and matrices,
      respectively. For complex vectors, the conjugate is taken.

    These add to the existing numpy.matmul as well as to
    numpy.vecdot, which was added in numpy 2.0.

    Note that numpy.matmul never takes a complex
    conjugate, also not when its left input is a vector, while both
    numpy.vecdot and numpy.vecmat do take
    the conjugate for complex vectors on the left-hand side (which are
    taken to be the ones that are transposed, following the physics
    convention).

    (gh-25675)

  • np.complexfloating[T, T] can now also be written as
    np.complexfloating[T]

    (gh-27420)

  • UFuncs now support __dict__ attribute and allow overriding
    __doc__ (either directly or via ufunc.__dict__["__doc__"]).
    __dict__ can be used to also override other properties, such as
    __module__ or __qualname__.

    (gh-27735)

  • The "nbit" type parameter of np.number and its subtypes now
    defaults to typing.Any. This way, type-checkers will infer
    annotations such as x: np.floating as x: np.floating[Any], even
    in strict mode.

    (gh-27736)

Improvements

  • The datetime64 and timedelta64 hashes now correctly match the
    Pythons builtin datetime and timedelta ones. The hashes now
    evaluated equal even for equal values with different time units.

    (gh-14622)

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

  • Improved support for empty memmap. Previously an empty
    memmap would fail unless a non-zero offset was set.
    Now a zero-size memmap is supported even if
    offset=0. To achieve this, if a memmap is mapped to
    an empty file that file is padded with a single byte.

    (gh-27723)

  • A regression has been fixed which allows F2PY users to expose variables
    to Python in modules with only assignments, and also fixes situations
    where multiple modules are present within a single source file.

    (gh-27695)

Performance improvements and changes

  • Improved multithreaded scaling on the free-threaded build when many
    threads simultaneously call the same ufunc operations.

    (gh-27896)

  • NumPy now uses fast-on-failure attribute lookups for protocols. This
    can greatly reduce overheads of function calls or array creation
    especially with custom Python objects. The largest improvements will
    be seen on Python 3.12 or newer.

    (gh-27119)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

  • NumPy now indicates hugepages also for large np.zeros allocations
    on linux. Thus should generally improve performance.

    (gh-27808)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

  • The type annotations of numpy.float64 and numpy.complex128 now
    reflect that they are also subtypes of the built-in float and
    complex types, respectively. This update prevents static
    type-checkers from reporting errors in cases such as:

    x: float = numpy.float64(6.28)  # valid
    z: complex = numpy.complex128(-1j)  # valid

    (gh-27334)

  • The repr of arrays large enough to be summarized (i.e., where
    elements are replaced with ...) now includes the shape of the
    array, similar to what already was the case for arrays with zero
    size and non-obvious shape. With this change, the shape is always
    given when it cannot be inferred from the values. Note that while
    written as shape=..., this argument cannot actually be passed in
    to the np.array constructor. If you encounter problems, e.g., due
    to failing doctests, you can use the print option legacy=2.1 to
    get the old behaviour.

    (gh-27482)

  • Calling __array_wrap__ directly on NumPy arrays or scalars now
    does the right thing when return_scalar is passed (Added in NumPy
    2). It is further safe now to call the scalar __array_wrap__ on a
    non-scalar result.

    (gh-27807)

  • Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
    1_1 is end of life.

    (gh-27088)

  • The NEP 50 promotion state settings are now removed. They were always
    meant as temporary means for testing. A warning will be given if the
    environment variable is set to anything but NPY_PROMOTION_STATE=weak
    while _set_promotion_state and _get_promotion_state are removed. In
    case code used _no_nep50_warning, a contextlib.nullcontext could be
    used to replace it when not available.

    (gh-27156)

Checksums

MD5

1b58b9e275e80364cd02dafb3f8daf35  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
7d3773d9b665b2d7cfec0cc0b760e69e  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
8ef666a462d3765ccfd5288f2fdf8e08  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
e4f9e3117075ffe53d7993253c774158  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
fd60e410e5db402a2d0c0cb4dd23281d  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64c083cdbd91eb8670cd72b619f3a039  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c3c75c2299f5163770e2e42f0dee5276  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6ab05f787221bbaf8fb4a9778af5467  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
9b04caec124cadf90005ccdb662aad9f  numpy-2.2.0-cp310-cp310-win32.whl
58934f23b6bc71fb1f984b688c1c6136  numpy-2.2.0-cp310-cp310-win_amd64.whl
769e53438154e53ba490fb4f816c083e  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
aa8060c013c04133b63780025eef4451  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
72c10ef28a0ddffe6bf2495954ab82e0  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
946b2510c86eb48e374e6987582c9b46  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
3f5203ae901ddd78cb298582eda07627  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fd14624d40100a5eb0181bf393394448  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7c86d51d89dbc5a6860d65641ea131ef  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
895c6588c74019b94fb3c740b9e9a0f5  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
1468ae1cb59a43991b199cfa6f1e5679  numpy-2.2.0-cp311-cp311-win32.whl
48a3792698a81917320b91a30c0bacf4  numpy-2.2.0-cp311-cp311-win_amd64.whl
db4377351f167d82adc66b16965d11bd  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
3f3978b5e480ed18d55b1799d9a534ff  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
584b4063eb66688b607f7e7bdca58011  numpy-2.2.0-cp312-cp312-macosx_14_0...
Read more

2.2.0rc1 (Nov 26, 2024)

26 Nov 17:43
v2.2.0rc1
de271f1
Compare
Choose a tag to compare
Pre-release

NumPy 2.2.0 Release Notes

The NumPy 2.2.0 release is a quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

  • New functions matvec and vecmat, see below.
  • Many improved annotations.
  • Improved support for the new StringDType.
  • Improved support for free threaded Python
  • Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

  • _add_newdoc_ufunc is now deprecated. ufunc.__doc__ = newdoc
    should be used instead.

    (gh-27735)

Expired deprecations

  • bool(np.array([])) and other empty arrays will now raise an error.
    Use arr.size > 0 instead to check whether an array has no
    elements.

    (gh-27160)

Compatibility notes

  • numpy.cov now properly transposes single-row (2d array) design matrices
    when rowvar=False. Previously, single-row design matrices would return a
    scalar in this scenario, which is not correct, so this is a behavior change
    and an array of the appropriate shape will now be returned.

    (gh-27661)

New Features

  • New functions for matrix-vector and vector-matrix products

    Two new generalized ufuncs were defined:

    • numpy.matvec - matrix-vector product, treating the
      arguments as stacks of matrices and column vectors,
      respectively.
    • numpy.vecmat - vector-matrix product, treating the
      arguments as stacks of column vectors and matrices,
      respectively. For complex vectors, the conjugate is taken.

    These add to the existing numpy.matmul as well as to
    numpy.vecdot, which was added in numpy 2.0.

    Note that numpy.matmul never takes a complex conjugate, also not when its
    left input is a vector, while both numpy.vecdot and numpy.vecmat do
    take the conjugate for complex vectors on the left-hand side (which are
    taken to be the ones that are transposed, following the physics
    convention).

    (gh-25675)

  • np.complexfloating[T, T] can now also be written as
    np.complexfloating[T]

    (gh-27420)

  • UFuncs now support __dict__ attribute and allow overriding
    __doc__ (either directly or via ufunc.__dict__["__doc__"]).
    __dict__ can be used to also override other properties, such as
    __module__ or __qualname__.

    (gh-27735)

  • The "nbit" type parameter of np.number and its subtypes now
    defaults to typing.Any. This way, type-checkers will infer
    annotations such as x: np.floating as x: np.floating[Any], even
    in strict mode.

    (gh-27736)

Improvements

  • The datetime64 and timedelta64 hashes now correctly match the
    Pythons builtin datetime and timedelta ones. The hashes now
    evaluated equal even for equal values with different time units.

    (gh-14622)

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

  • Improved support for empty memmap. Previously an empty memmap would
    fail unless a non-zero offset was set. Now a zero-size memmap is
    supported even if offset=0. To achieve this, if a memmap is mapped to
    an empty file that file is padded with a single byte.

    (gh-27723)

  • f2py handles multiple modules and exposes variables again. A regression
    has been fixed which allows F2PY users to expose variables to Python in
    modules with only assignments, and also fixes situations where multiple
    modules are present within a single source file.

    (gh-27695)

Performance improvements and changes

  • NumPy now uses fast-on-failure attribute lookups for protocols. This
    can greatly reduce overheads of function calls or array creation
    especially with custom Python objects. The largest improvements will
    be seen on Python 3.12 or newer.

    (gh-27119)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

  • NumPy now indicates hugepages also for large np.zeros allocations
    on linux. Thus should generally improve performance.

    (gh-27808)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

  • The type annotations of numpy.float64 and numpy.complex128 now reflect
    that they are also subtypes of the built-in float and complex types,
    respe 1E79 ctively. This update prevents static type-checkers from reporting
    errors in cases such as:

    x: float = numpy.float64(6.28)  # valid
    z: complex = numpy.complex128(-1j)  # valid

    (gh-27334)

  • The repr of arrays large enough to be summarized (i.e., where
    elements are replaced with ...) now includes the shape of the
    array, similar to what already was the case for arrays with zero
    size and non-obvious shape. With this change, the shape is always
    given when it cannot be inferred from the values. Note that while
    written as shape=..., this argument cannot actually be passed in
    to the np.array constructor. If you encounter problems, e.g., due
    to failing doctests, you can use the print option legacy=2.1 to
    get the old behaviour.

    (gh-27482)

  • Calling __array_wrap__ directly on NumPy arrays or scalars now
    does the right thing when return_scalar is passed (Added in NumPy
    2). It is further safe now to call the scalar __array_wrap__ on a
    non-scalar result.

    (gh-27807)

  • Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
    1_1 is end of life.

    (gh-27088)

  • NEP 50 promotion state option removed

    The NEP 50 promotion state settings are now removed. They were always meant as
    temporary means for testing. A warning will be given if the environment
    variable is set to anything but NPY_PROMOTION_STATE=weak while
    _set_promotion_state and _get_promotion_state are removed. In case code
    used _no_nep50_warning, a contextlib.nullcontext could be used to replace
    it when not available.

    (gh-27156)

Checksums

MD5

83746dfc1b7774a6677a69c705b83afe  numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
e69c45cf5ea08fdf2a5527190a7d6549  numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
d4f8048977139cb229875c201f605369  numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
8710578b7f4ceef7f73b6d234ad3a82a  numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
899d1f24d8e5570695a024908d100174  numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cb768ee568bed2e4f55d47f43c655bc2  numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a40726db153ca1984598323cc59eb9b  numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
450e5e05bdc5551c0a4df2a8d7f09925  numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
1c34c86b0abaa5d2a75677044a7fca07  numpy-2.2.0rc1-cp310-cp310-win32.whl
d679ad13f3892325fd4542931ee74852  numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
a7a8cf5fa2e3d4bd0131ad48c0215f50  numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
aa6c629290d8b05b44fbbf805fb39dbe  numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
a04fe8ac96a5226686ec4190db8511d6  numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
50aedb2a570a7867e860d98eb816bec4  numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
cd034c5179ee4cc5669ae36be0deb6ab  numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
67e3336cdcdcf72cd07978a465e61ebd  numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
45456522fc3996937f1b1ad8bd7f85b2  numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
244dcedc05e96c843853738bc2d37bdb  numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
da24dd620b6509740a1d8aebe4d1306c  numpy-2.2.0rc1-cp311-cp311-win32.whl
472e5f997dc437b8115ba4ef70a6a266  numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
6e4ec4f92f8b0768d679419360098a89  numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
e15a1756fbe98aa61cb8d98de1d516fc  numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
6c58bba6f453ad22a651f6f0f6416899  numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
1a00dd2343f8e...
Read more

2.1.3 (Nov 2, 2024)

02 Nov 18:02
v2.1.3
98464cc
Compare
Choose a tag to compare

NumPy 2.1.3 Release Notes

NumPy 2.1.3 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.2 release. This release also adds support
for free threaded Python 3.13 on Windows.

The Python versions supported by this release are 3.10-3.13.

Improvements

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar +
  • Austin +
  • Benjamin A. Beasley +
  • Charles Harris
  • Christian Lorentzen
  • Marcel Telka +
  • Matti Picus
  • Michael Davidsaver +
  • Nathan Goldbaum
  • Peter Hawkins
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Sebastian Berg
  • dependabot[bot]
  • kp2pml30 +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #27512: MAINT: prepare 2.1.x for further development
  • #27537: MAINT: Bump actions/cache from 4.0.2 to 4.1.1
  • #27538: MAINT: Bump pypa/cibuildwheel from 2.21.2 to 2.21.3
  • #27539: MAINT: MSVC does not support #warning directive
  • #27543: BUG: Fix user dtype can-cast with python scalar during promotion
  • #27561: DEV: bump python to 3.12 in environment.yml
  • #27562: BLD: update vendored Meson to 1.5.2
  • #27563: BUG: weighted quantile for some zero weights (#27549)
  • #27565: MAINT: Use miniforge for macos conda test.
  • #27566: BUILD: satisfy gcc-13 pendantic errors
  • #27569: BUG: handle possible error for PyTraceMallocTrack
  • #27570: BLD: start building Windows free-threaded wheels [wheel build]
  • #27571: BUILD: vendor tempita from Cython
  • #27574: BUG: Fix warning "differs in levels of indirection" in npy_atomic.h...
  • #27592: MAINT: Update Highway to latest
  • #27593: BUG: Adjust numpy.i for SWIG 4.3 compatibility
  • #27616: BUG: Fix Linux QEMU CI workflow
  • #27668: BLD: Do not set __STDC_VERSION__ to zero during build
  • #27669: ENH: fix wasm32 runtime type error in numpy._core
  • #27672: BUG: Fix a reference count leak in npy_find_descr_for_scalar.
  • #27673: BUG: fixes for StringDType/unicode promoters

Checksums

MD5

3f2f22827dd321ae86b5ab4fa888d0db  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
13da2761d1abe71731a2806537369115  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
5aef4a78b69cd90d0f6fff8f88817991  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
12da7f09cd5707634878f85845c9de10  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
5b999693362815b56855533469aea0ca  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8c49f457127bfb4f167c91583e5167af  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f31c0e80b18afc0c04cada401cbe0358  numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
2c0709812e27bcaf74d75ac8ed45614b  numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
a65b28800e78942b9e60e03e96cfd0c0  numpy-2.1.3-cp310-cp310-win32.whl
d8358545732fe4ee1ecf407b06567d81  numpy-2.1.3-cp310-cp310-win_amd64.whl
34942f9a1391532e2c3168043c0021d5  numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
0d69ec06e303b5112788db68a8fdde1b  numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
da1988c8d3a9db5947a2bd51290b8b95  numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
b5eba73c2abaf5a81535f4b1034fe8d2  numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
63cc090209718aa1d0f0fbd3fd03bc0b  numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f14ca7b55554d4a043369ae5f1837f  numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4e58e0645d81ff84c0fb75311d2a97d6  numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
30235088a5f86d1f343bfec458f6292d  numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
c80a03952b2f4950f1eb9d1656413fec  numpy-2.1.3-cp311-cp311-win32.whl
d8c1a5a441b89591af8f09dfa0b2d4d5  numpy-2.1.3-cp311-cp311-win_amd64.whl
2cebcea71e71e8b09a25179b240ee240  numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
faf5df4bd35ca362795cda193da49591  numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
573f195910fc3b3e9ac5379816280f89  numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
900548b2acb82ed0e306943fb68de802  numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
81cded28bb87c4987b1d975fe768c3a1  numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2b83cb346bca97475fa5e39e704c45f1  numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06d8593cb7a2aae157e028c3d4cb3c96  numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
eea8b148a6a2fee37b87291043e00bda  numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
d407b7c48457789914f28004f41d6ea2  numpy-2.1.3-cp312-cp312-win32.whl
117574ee1a645e63a6d69e20c8673665  numpy-2.1.3-cp312-cp312-win_amd64.whl
0c9ffd1f1f1e96186f30a578b85da653  numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
cd430b2caf09d21680616aef5d4a439d  numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
b431935148221b79bda9490b1d069e3c  numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
b3ff577c78097b187bd58f20b6e88642  numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
8186f86f8d94a5505e6dcebe6c056ab7  numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2c5b2381a4a4e3d9865ccb346d44a7ed  numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
85786d12388d60b904c02eb12df55b37  numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
da68282c0418a22730643906e5dd58a1  numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
fe47e181a70d3e865e5d6a27e5fa71cd  numpy-2.1.3-cp313-cp313-win32.whl
8b7f290784c95cf620e0ac1af5470f1d  numpy-2.1.3-cp313-cp313-win_amd64.whl
4f0c3f8c81cb6bd43a9f1f7bef7db82d  numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
133905fd003c9504fc5bb9ce71e4103b  numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
12fe4f265dbda251309f109cbcd46f07  numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
b60e418506b969e6df2c0d600bf3c6d4  numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
c2b7160b748f4c1c483a7954e5024250  numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8097ddb45c8c821085c19d940bcbe6de  numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
209f55dc1ed6da23a5ea3e11ca962308  numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
06a1792849b601c7bdd38e39bc5cb5f1  numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
86630bf207e8cbe6933232cb2a47a6c0  numpy-2.1.3-cp313-cp313t-win32.whl
6af9109b82c0acdcf8b0e81dc0e4c517  numpy-2.1.3-cp313-cp313t-win_amd64.whl
c7e821e086346afc0078acb237f30431  numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
5b938b2da78b1c84044df8cdb2e8e63a  numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
ef251f3b6aa022b1c2fac14889d6d9d3  numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356c7bb6067ae0dccc4a54efc1879e74  numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
11096358375945114577a0c82b2c6038  numpy-2.1.3.tar.gz

SHA256

c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c  numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4  numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23  numpy-2.1.3-cp310-cp310-win32.whl
ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0  numpy-2.1.3-cp310-cp310-win_amd64.whl
4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d  numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41  numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
576a1c...
Read more

2.1.2 (Oct 5, 2024)

05 Oct 18:52
v2.1.2
f5afe3d
Compare
Choose a tag to compare

NumPy 2.1.2 Release Notes

NumPy 2.1.2 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.1 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 11 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Chris Sidebottom
  • Ishan Koradia +
  • João Eiras +
  • Katie Rust +
  • Marten van Kerkwijk
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Pieter Eendebak
  • Slava Gorloff +

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #27333: MAINT: prepare 2.1.x for further development
  • #27400: BUG: apply critical sections around populating the dispatch cache
  • #27406: BUG: Stub out get_build_msvc_version if distutils.msvccompiler...
  • #27416: BUILD: fix missing include for std::ptrdiff_t for C++23 language...
  • #27433: BLD: pin setuptools to avoid breaking numpy.distutils
  • #27437: BUG: Allow unsigned shift argument for np.roll
  • #27439: BUG: Disable SVE VQSort
  • #27471: BUG: rfftn axis bug
  • #27479: BUG: Fix extra decref of PyArray_UInt8DType.
  • #27480: CI: use PyPI not scientific-python-nightly-wheels for CI doc...
  • #27481: MAINT: Check for SVE support on demand
  • #27484: BUG: initialize the promotion state to be weak
  • #27501: MAINT: Bump pypa/cibuildwheel from 2.20.0 to 2.21.2
  • #27506: BUG: avoid segfault on bad arguments in ndarray.__array_function__

Checksums

MD5

4aae28b7919b126485c1aaccee37a6ba  numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
172614423a82ef73d8752ad8a59cbafc  numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
5ee5e7a8a892cbe96ee228ca5fe7546b  numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
9ce6f9222dfabd32e66b883f1fe015aa  numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
291da8bfeb7c9a3491ec35ecb2596335  numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9317d9b049f09c0193f074a6458cf79b  numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1f2c121533715d8b099d6498e4498f81  numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
2834df46e2cb2e81cbe4fd1ce9b96b4b  numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
cbc3ae2c176324fe2a9c04ec0aff181f  numpy-2.1.2-cp310-cp310-win32.whl
e4d74f9d188dc3fe7a65adf8c01e98cc  numpy-2.1.2-cp310-cp310-win_amd64.whl
cbcece9c21ed1daf60f3729a37b32266  numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
0e62474993ff6faca9c467f68cc16ceb  numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
8747e85e09b2000a0af5a8226740dc92  numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
34e7f3591ce81926518a36c92038a056  numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
0ec3e617161b42d643aaa4b8d3e477f5  numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2a6a419b4672bfb4f3f6a98c0e575bb  numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8c14b4d03fc8672e43eddd3ede89be09  numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
dc183e12b24317bf210fb093da598d29  numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
4918f2c32ca3be20c7c5d8551e649757  numpy-2.1.2-cp311-cp311-win32.whl
a8991919b6fae3c7a77c260f60a5e2e2  numpy-2.1.2-cp311-cp311-win_amd64.whl
879f307d16f9222c49508be5ea6491fc  numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
fe9dfac7bee0cff178737e1706aee61a  numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
1f0c671db3294f4df8bffedc41a2e37f  numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
d131c4bd6ba29b05a5b7fa74e87a0506  numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
8f9cca33590be334d44cc026a3716966  numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3692a9290dd430e56e1b15387c25b7af  numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3549439284dbb1a05785b535c3de60d9  numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl
b9934410f20505e5c4b70974cd8fdc26  numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
96759e3380e4893b9b88d5d498d856b2  numpy-2.1.2-cp312-cp312-win32.whl
f94c7405ed72a136e374ab82400fefdc  numpy-2.1.2-cp312-cp312-win_amd64.whl
2ea775cb4da02f39edf3089af60bddd5  numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl
354d0970154dd002573f4291e0e9de76  numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl
bbfee75640b337e12f894d0b54727d66  numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl
a443fff50571df87f687ad55c9060d25  numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl
9f8cd7de5b5aa5ad8ba52608a4b0a3b8  numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c198fe3deaa77fb94d15284b4e26b875  numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a59171c983fc2d8ea599bdf382c3d6a  numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl
5ba974cd59fb8c9fc94787c754a5f636  numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl
93d5c642606fe8abeff0e6db31ebe88f  numpy-2.1.2-cp313-cp313-win32.whl
f6455bb4311ddde071a5ea2e14016003  numpy-2.1.2-cp313-cp313-win_amd64.whl
d2a21857c924d4b1b3c8ae8a9e9b9bb4  numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl
cd6afcbd05835255750a2fba6012c565  numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl
d2fab663ea84f1cfe13dfc00dae74fb6  numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl
9477b923000d63617324c487a4ce0e28  numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl
84b621a2c9a8c077bc9c471abd2b3933  numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1c341c7192d03e8f0f5e7c4b9b6f894  numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b59750ea55cf274854f64109bf67a112  numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl
33f4d63f81ad85c1ea873197f2189d89  numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl
f26a9ac42953c84c94f8203b2dbc61c0  numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e7cf2857582d507dfa3e8644dd3562a6  numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
9e3d44cb302c629c00fde8f25809b04d  numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3f97ee2d9962cf9d84624f725bdd2a8f  numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl
3d92e07d34f60dbac6b82a0982a98757  numpy-2.1.2.tar.gz

SHA256

30d53720b726ec36a7f88dc873f0eec8447fbc93d93a8f079dfac2629598d6ee  numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d3ca0a72dd8846eb6f7dfe8f19088060fcb76931ed592d29128e0219652884  numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
fc44e3c68ff00fd991b59092a54350e6e4911152682b4782f68070985aa9e648  numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
7c1c60328bd964b53f8b835df69ae8198659e2b9302ff9ebb7de4e5a5994db3d  numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
6cdb606a7478f9ad91c6283e238544451e3a95f30fb5467fbf715964341a8a86  numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d666cb72687559689e9906197e3bec7b736764df6a2e58ee265e360663e9baf7  numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c6eef7a2dbd0abfb0d9eaf78b73017dbfd0b54051102ff4e6a7b2980d5ac1a03  numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
12edb90831ff481f7ef5f6bc6431a9d74dc0e5ff401559a71e5e4611d4f2d466  numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
a65acfdb9c6ebb8368490dbafe83c03c7e277b37e6857f0caeadbbc56e12f4fb  numpy-2.1.2-cp310-cp310-win32.whl
860ec6e63e2c5c2ee5e9121808145c7bf86c96cca9ad396c0bd3e0f2798ccbe2  numpy-2.1.2-cp310-cp310-win_amd64.whl
b42a1a511c81cc78cbc4539675713bbcf9d9c3913386243ceff0e9429ca892fe  numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
faa88bc527d0f097abdc2c663cddf37c05a1c2f113716601555249805cf573f1  numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
c82af4b2ddd2ee72d1fc0c6695048d457e00b3582ccde72d8a1c991b808bb20f  numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
13602b3174432a35b16c4cfb5de9a12d229727c3dd47a6ce35111f2ebdf66ff4  numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
1ebec5fd716c5a5b3d8dfcc439be82a8407b7b24b230d0ad28a81b61c2f4659a  numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b49c3c0804e8ecb05d59af8386ec2f74877f7ca8fd9c1e00be2672e4d399b1  numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2cbba4b30bf31ddbe97f1c7205ef976909a93a66bb1583e983adbd155ba72ac2  numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
8e00ea6fc82e8a804433d3e9cedaa1051a1422cb6e443011590c14d2dea59146  numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
5006b13a06e0b38d561fab5ccc37581f23c9511879be7693bd33c7cd15ca227c  numpy-2.1.2-cp311-cp311-win32.whl
f1eb068ead09f4994dec71c24b2844f1e4e4e013b9629f812f292f04bd1510d9  numpy-2.1.2-cp311-cp311-win_amd64.whl
d7bf0a4f9f15b32b5ba53147369e94296f5fffb783db5aacc1be15b4bf72f43b  numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
b1d0fcae4f0949f215d4632be684a539859b295e2d0cb14f78ec231915d644db  numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
f751ed0a2f250541e19dfca9f1eafa31a392c71c832b6bb9e113b10d050cb0f1  numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
bd33f82e95ba7ad632bc57837ee99dba3d7e006536200c4e9124089e1bf42426  numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
1b8cde4f11f0a975d1fd59373b32e2f5a562ade7cde4f85b7137f3de8fbb29a0  numpy-2.1.2-cp312-cp312-manylinux_2_17_...
Read more

2.1.1 (Sep 3, 2024)

03 Sep 15:35
v2.1.1
48606ab
Compare
Choose a tag to compare

NumPy 2.1.1 Release Notes

NumPy 2.1.1 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.0 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Mateusz Sokół
  • Maximilian Weigand +
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg

Pull requests merged

A total of 10 pull requests were merged for this release.

  • #27236: REL: Prepare for the NumPy 2.1.0 release [wheel build]
  • #27252: MAINT: prepare 2.1.x for further development
  • #27259: BUG: revert unintended change in the return value of set_printoptions
  • #27266: BUG: fix reference counting bug in __array_interface__ implementation...
  • #27267: TST: Add regression test for missing descr in array-interface
  • #27276: BUG: Fix #27256 and #27257
  • #27278: BUG: Fix array_equal for numeric and non-numeric scalar types
  • #27287: MAINT: Update maintenance/2.1.x after the 2.0.2 release
  • #27303: BLD: cp311- macosx_arm64 wheels [wheel build]
  • #27304: BUG: f2py: better handle filtering of public/private subroutines

Checksums

MD5

3053a97400db800b7377749e691eb39e  numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
84b752a2220dce7c96ff89eef4f4aec3  numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
47ed4f704a64261f07ca24ef2e674524  numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
b8a45caa870aee980c298053cf064d28  numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
e097ad5eee572b791b4a25eedad6df4a  numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae502c99315884cda7f0236a07c035c4  numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
841a859d975c55090c0b60b72aab93a3  numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
d51be2b17f5b87aac64ab80fdfafc85e  numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
1f8249bd725397c6233fe6a0e8ad18b1  numpy-2.1.1-cp310-cp310-win32.whl
d38d6f06589c1ec104a6a31ff6035781  numpy-2.1.1-cp310-cp310-win_amd64.whl
6a18fe3029aae00986975250313bf16f  numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
5b0b3aa01fbd0b5a8b0f354bb878351e  numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
1c492dad399abe7b97274b4c6c12ae53  numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
4d55d91e71b62eb5fa6561c606524f60  numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
88e99ecd063c178f25bc08d20792a9bf  numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f3c8b0e4fb059b9219e8ec86d9fda861  numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df632b5fed7eb78d39e7194d2475c19b  numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
65499daccdb178d26e322d9f359cf146  numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
eb97327fd7aa6027e2409d0dcca1129a  numpy-2.1.1-cp311-cp311-win32.whl
9e4b05b38cbff22c2bdfead528b9d2bc  numpy-2.1.1-cp311-cp311-win_amd64.whl
6b8a359bb865b5c624fd9ffc848393e1  numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
eaf8dce312efa2b0f17ad46612fb1681  numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
c861ff048b336284fe7c0791b1a6b0b4  numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
7e1befccfe729dc5d6c450a5fb6b801c  numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
ea0a401ef653a167221987a10cbef260  numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97326ac792d26f2e536a519c82f2d6bc  numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdd2a82232c03d11bbc7cec0a8e01ab0  numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
0d6716e9a7b2c0d6e5ace9c01b9bca01  numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
ba589ed2a79c88187c3b8574ae72a1c7  numpy-2.1.1-cp312-cp312-win32.whl
806ca7c1e2a2013b786edbb619f6da47  numpy-2.1.1-cp312-cp312-win_amd64.whl
647665353e5af5884df4e51610990c22  numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
bfd3b3c5c4616ef99d917bd94d39114a  numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
cb989095f9c74e3b32250a984390faeb  numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
55ad7548e58f61b9a4f91749e36d237f  numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
5bc73d67dd1032524bfd36ef877b09e4  numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c7dfb09db8284cb75296f708c3f77ea3  numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7cf90ce1b844a97aeea1a5b8c71fb49b  numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
6ec8baeac5f979a3b98017679d457bbc  numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
1f198cb5210c76faae81359a83d58230  numpy-2.1.1-cp313-cp313-win32.whl
1766258213ad41f7e36f2209ee6d2a30  numpy-2.1.1-cp313-cp313-win_amd64.whl
f0a7a0456308dbeb739ad886f1632f16  numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
302c9cf7b4aa695974500ee1935a92c9  numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
f4aa7d784992abb9bd9fe9db09c01c06  numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
3bb4ae9906499609769f1774438149a5  numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
ff6b9e1993d3d540074736014b1d13af  numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
749489c091ee9c00abf1ad1ef822c3ca  numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
32d2daf4064031f365ced5036757ad8b  numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
603dfe4ef56c01e1fc0dcc9d5e3090ed  numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
70fa2d3b78633bb6061c90e17364f27f  numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
9a430be5d14b689ed051eccc540dfbdc  numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7291ff124e471d32c03464da18ff108d  numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e56ce141724af119c7c647a8705827a5  numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
f63b4750618bfa5490f10cae37fde998  numpy-2.1.1.tar.gz

SHA256

c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9  numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd  numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f  numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab  numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7  numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6  numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0  numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647  numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728  numpy-2.1.1-cp310-cp310-win32.whl
d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae  numpy-2.1.1-cp310-cp310-win_amd64.whl
0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550  numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f  numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0  numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95  numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca  numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf  numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e  numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2  numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d  numpy-2.1.1-cp311-cp311-win32.whl
ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e  numpy-2.1.1-cp311-cp311-win_amd64.whl
7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e  numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe  numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f  numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521  numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b  numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201  numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a  numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313  numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
950802d17a33c07cba7fd7c3dcfa7d64...
Read more
0