8000 GitHub - mayeaux/whisper-ctranslate2: Whisper command line client compatible with original OpenAI client based on CTranslate2.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Whisper command line client compatible with original OpenAI client based on CTranslate2.

License

Notifications You must be signed in to change notification settings

mayeaux/whisper-ctranslate2

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI version PyPI downloads

Introduction

Whisper command line client compatible with original OpenAI client based on CTranslate2.

It uses CTranslate2 and Faster-whisper Whisper implementation that is up to 4 times faster than openai/whisper for the same accuracy while using less memory.

Goals of the project:

  • Provide an easy way to use the CTranslate2 Whisper implementation
  • Easy the migration for people using OpenAI Whisper CLI

Installation

Just type:

pip install -U whisper-ctranslate2

Alternatively, the following command will pull and install the latest commit from this repository, along with its Python dependencies:

pip install git+https://github.com/jordimas/whisper-ctranslate2.git

Usage

Same command line that OpenAI whisper.

To transcribe:

whisper-ctranslate2 inaguracio2011.mp3 --model medium

image

To translate:

whisper-ctranslate2 inaguracio2011.mp3 --model medium --task translate

image

Additionally using:

whisper-ctranslate2 --help

All the supported options with their help are shown.

Whisper-ctranslate2 specific options

On top of the OpenAI Whisper command line options, there are some specific CTranslate2 options.

--compute_type {default,auto,int8,int8_float16,int16,float16,float32}

Type of quantization to use. On CPU int8 will give the best performance.

--model_directory MODEL_DIRECTORY

Directory where to find a CTranslate Whisper model, for example a fine-tunned Whisper model. The model should be in CTranslate2 format.

--device_index

Device IDs where to place this model on

--print-colors

Adding the --print_colors True argument will print the transcribed text using an experimental color coding strategy based on whisper.cpp to highlight words with high or low confidence:

image

Contact

Jordi Mas jmas@softcatala.org

About

Whisper command line client compatible with original OpenAI client based on CTranslate2.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.5%
  • Makefile 0.5%
0