Test stateful stuff statelessly, and reasonably.
- What is this?
- How does this work?
- How do I use this?
- Usage.
- Types.
- DSL.
- Composability.
- Modules
- Examples
- Changelogs — Latest.
Firstly, a quick mention of what this is not:
-
This is not a test framework.
Use it conjunction with ScalaTest, Specs2, μTest, etc. -
This is not a property testing library.
Use it conjunction with ScalaCheck, Nyaya, ScalaProps, etc.
Ok, so what is this? This is a library that:
-
Lets you write pure, immutable, referentially-transparent tests that verify stateful, effectful code or data.
-
Encourages composability of test concepts such as invariants/properties, pre/post conditions, dynamic actions/assertions, and more.
-
Makes test failure and inspection easy to comprehend.
- Unit-test a webapp with Scala.JS.
- Test DB triggers, or a DB migration.
- Integration-test.
- Random-test (fuzz-test) like Android's
monkeyrunner
or ScalaCheck'sCommand
API. - UAT automation.
- Compiled for Scala & Scala.JS.
- Can run synchronously, asynchronously (
Future
) or in your own context-type (egTask
). Is stack-safe. - Everything is immutable and composable.
- Everything can be transformed into (reused in) different contexts.
- Combines property and imperative testing.
- Actions and assertions can be non-deterministic and/or dependent on runtime state.
- Tries to be as transparent and informative as possible about test execution.
- Optionally configurable error type. Use a custom ADT to precisely maintain all forms of failure and error in your domain.
- Includes a utility called
DomZipper
which greatly simplifies the task of HTML/SVG observation. - Extension modules for various 3rd-party libraries. (Scalaz, Cats, more.)
The key is to take observations of anything relevant in the stateful test subject. Observations are like immutable snapshots. They capture what the state was at a particular point in time. Once an observation is captured, assertions are performed on it.
Optionally, you can specify some kind of test-only state that you modify as you test,
and use to ensure the real-world observations are what you expect.
For example, if you're testing a bank account app, you could maintain your own expected balance such that
when you instruct the app to make a deposit, you add the same amount to your state.
You could then add an invariant that whenever the balance is shown in the app, it matches the expected state balance.
This is a (simplified) model of how tests are executed:
- Usage.
- Types.
- DSL.
- Composability.
Module | Description | Platforms |
---|---|---|
core |
The core module. | Scala + Scala.JS. |
dom-zipper |
Standalone utility for observing web DOM. (Requires jQuery or Sizzle.) |
Scala.JS only. |
dom-zipper-sizzle |
As above bundled with Sizzle. | Scala.JS only. |
ext-cats |
Extensions for Cats. | Scala + Scala.JS. |
ext-nyaya |
Extensions for Nyaya. | Scala + Scala.JS. |
ext-scalajs-react |
Extensions for scalajs-react. | Scala.JS only. |
ext-scalaz |
Extensions for Scalaz. | Scala + Scala.JS. |
- Scala.Js + React - Demonstrates DomZipper, invariants, actions, basics.
- [TODO] DB triggers. - real external state, ref.
- [TODO] Mutable sample. - fuzz, invariants.