8000 GitHub - mtxing/BLOOM-Net: Source code for "BLOOM-Net: Blockwise Optimization for Masking Networks Toward Scalable and Efficient Speech Enhancement"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Source code for "BLOOM-Net: Blockwise Optimization for Masking Networks Toward Scalable and Efficient Speech Enhancement"

License

Notifications You must be signed in to change notification settings

mtxing/BLOOM-Net

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BLOOM-Net

Source code for "BLOOM-Net: Blockwise Optimization for Masking Networks Toward Scalable and Efficient Speech Enhancement" [1].

Description

e2e_train.py trains the masking network in the conventional end-to-end manner. A 1-layered model needs to be trained with this script initially before proceeding to the sequential training phase.

cont_train.py takes in previous model, inserts and trains an additional block while freezing all previous blocks and encoder module.

finetuning.py fine-tunes the BLOOM-Net end-to-end as opposed to the previous sequential training procedure.

Usage

For training E2E models, the e2e_train.py script can be run through

python e2e_train.py --device 2 --is_ctn --nreps 2 --nblks 1 --tot_epoch 300 --duration 1 --no_skip_chan -b 64 --is_save

To proceed training the next sequential block,

python cont_train.py --device 3 --nreps 6 --load_SEmodel prev_model_dir/model_last.pt --load_SErundata prev_model_dir/rundata_last.pt --is_save

To fine-tune BLOOM-Net,

python finetuning.py --device 1 --ori_l1_dir ori_l1_dir/model_last.pt --feat_seq_l2_dir feat_seq_l2_dir/model_last.pt --feat_seq_l3_dir feat_seq_l3_dir/model_last.pt --feat_seq_l4_dir feat_seq_l4_dir/model_last.pt --feat_seq_l5_dir feat_seq_l5_dir/model_last.pt --feat_seq_l6_dir feat_seq_l6_dir/model_last.pt --is_save

Notes

  • Number of epochs required for convergence of additional blocks may vary during sequential training and also fine-tuning.

References

  1. S. Kim and M. Kim, “Bloom-net: Blockwise optimization for masking networks toward scalable andefficient speech enhancement,” in Proc. of the IEEE International Conference on Acoustics,Speech, and Signal Processing (ICASSP), 2022.

About

Source code for "BLOOM-Net: Blockwise Optimization for Masking Networks Toward Scalable and Efficient Speech Enhancement"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0