8000 GitHub - Zhuanglong2/Condformer: A novel Transformer-based end-to-end lane detection model
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Zhuanglong2/Condformer

Repository files navigation

Transformer Generates Conditional Convolution Kernels For End-to-End Lane Detection

This is the official implementation code of the paper "Transformer Generates Conditional Convolution Kernels For End-to-End Lane Detection"

Statement: This code is based on CondLaneNet.(Link: https://arxiv.org/abs/2105.05003)

Architecture,

Installation

This implementation is based on mmdetection(v2.0.0). Please refer to install.md for installation.

Datasets

We conducted experiments on CurveLanes, CULane and TuSimple. Please refer to dataset.md for installation.

Testing

CurveLanes 1 Edit the "data_root" in the config file to your Curvelanes dataset path. For example, for the small version, open "configs/curvelanes/curvelanes_small_test.py" and set "data_root" to "[your-data-path]/curvelanes".

2 run the test script

cd [project-root]
python tools/condlanenet/curvelanes/test_curvelanes.py configs/condlanenet/curvelanes/curvelanes_small_test.py [model-path] --evaluate

If "--evaluate" is added, the evaluation results will be printed. If you want to save the visualization results, you can add "--show" and add "--show_dst" to specify the save path.

CULane

1 Edit the "data_root" in the config file to your CULane dataset path. For example,for the small version, you should open "configs/culane/culane_small_test.py" and set the "data_root" to "[your-data-path]/culane".

2 run the test script

cd [project-root]
python tools/condlanenet/culane/test_culane.py configs/condlanenet/culane/culane_small_test.py [model-path]
  • you can add "--show" and add "--show_dst" to specify the save path.
  • you can add "--results_dst" to specify the result saving path.

3 We use the official evaluation tools of SCNN to evaluate the results.

TuSimple

1 Edit the "data_root" in the config file to your TuSimple dataset path. For example,for the small version, you should open "configs/tusimple/tusimple_small_test.py" and set the "data_root" to "[your-data-path]/tuSimple".

2 run the test script

cd [project-root]
python tools/condlanenet/tusimple/test_tusimple.py configs/condlanenet/tusimple/tusimple_small_test.py [model-path]
  • you can add "--show" and add "--show_dst" to specify the save path.
  • you can add "--results_dst" to specify the result saving path.

3 We use the official evaluation tools of TuSimple to evaluate the results.

Speed Test

cd [project-root]
python tools/condlanenet/speed_test.py configs/condlanenet/culane/culane_small_test.py [model-path]

Training

For example, train CULane using 4 gpus:

cd [project-root]
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29001 tools/dist_train.sh configs/condlanenet/culane/culane_small_train.py 4 --no-validate 

Citation

If you find this article very helpful in your research, or if you wish to have a reference when using our results, please cite the following papers:

About

A novel Transformer-based end-to-end lane detection model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0