8000 GitHub - ZhenghanFang/WaveSep
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ZhenghanFang/WaveSep

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WaveSep

This repo contains the official PyTorch implementation for the paper WaveSep: A Flexible Wavelet-based Approach for Source Separation in Susceptibility Imaging, at MLCN 2023

by Zhenghan Fang, Hyeong-Geol Shin, Peter van Zijl, Xu Li, and Jeremias Sulam

Dependencies

Create and activate a new conda environment

conda create -n wavesep python==3.10
conda activate wavesep

Install necessary python packages

pip install -r requirements.txt

Usage

QSM source separation

python wavesep/qsm_sep.py --data <yml of input data>

The yml file contains the input data for QSM source separation. See data/yml/template_qsm.yml for more details. See data/yml/example_qsm.yml for an example.

🔄 Update (2025/04/23): Support for different Dr values for para- and dia-magnetic maps (Dr_pos ≠ Dr_neg)

In this case, the second term in fQSM in Eq. (3) in the paper is changed from

1/2 * || R2' / Dr - (x_pos - x_neg) ||_2^2

to

1/2 * || R2' / Dr_pos - (x_pos - x_neg * Dr_neg / Dr_pos) ||_2^2.

where the units are:

  • R2': Hz
  • Dr, Dr_pos, Dr_neg: Hz/ppm

STI source separation

python wavesep/sti_sep.py --data <yml of input data>

The yml file contains the input data for STI source separation. See data/yml/template_sti.yml for more details. See data/yml/example_sti.yml for an example.

Contact

If you have any questions, please contact me at

Zhenghan Fang

Email: zfang23@jhu.edu

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0