8000 GitHub - ZJU-DAILY/Estimator
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ZJU-DAILY/Estimator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This folder (i.e., ./CNN, /CNNTCN) holds the source code of our methods.

Environment Preparation

  • Pytorch 1.9.0
  • Python version: 3.9
  • GPU Server: GeForce RTX 3090, 2.40GHz GPU, and 24-GB RAM
  • Please refer to the source code to install all required packages of libs.

Dataset Description

  • "./Geolife, ./CNN/Image, ./CNNTCN/Geolife" contains original trajectory data (data1), mapped trajectory data, trajectory data with seasonal data (data2) or partitioning(data1), and boundary information of 3 partitions (bjDistrict).
  • Note, Geolife dataset is consisted of seven kinds of mode datasets.
  • The format of the datasets are respectively: Trajectory data: moving object's sampling points consisted of lattitude, longitude, timestamp. Mapped trajectory data: grid images (50*50) of trajectory data. Boundary information: points on the boundaries consisted of lattitude and longetude.

Running

  • Remove redundant information (e.g. altitude) of sampling points in GeolifeDataset 1.3;
  • Generate seven mode datasets and compose them as a new Geolife './Geolife';
  • Get mapped trajectory by './CNN/trajectory_mapping.py';
  • Train the CNN model by './CNN/main.py' and save the parameters ('./CNN/res50.py' explains how Resnet50 works)
  • Load the train set and test set from seven mode datasets and Geolife;
  • Run './CNNTCN/geolife_test.py' without cnnTest(), test(), test1() to train TCN model ('./CNNTCN/tcn.py' and './CNNTCN/model.py' explain how TCN works);
  • Run './CNNTCN/geolife_test.py' without train(epoch) to test CNN-TCN model and evaluate our methods;

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0