8000 GitHub - Yzichen/mmLaneDet
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Yzic 8000 hen/mmLaneDet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MMLaneDet


Introduction

MMLaneDet is an open source lane detection toolbox based on Pytorch. It contains many excellent lane detection models and our DALNet (The code will be made available after acceptance of the paper).

Supported datasets:

Supported detectors:

Preparation

Environments Preparation

Python == 3.8
CUDA == 11.1
pytorch == 1.9.1
mmcv-full == 1.5.1
mmdet == 2.25.0

python setup.py develop

Data Preparation

Tusimple

Download Tusimple. Then extract them to $TUSIMPLEROOT. Create link to data directory.

cd $LANEDET_ROOT
mkdir -p data
ln -s $TUSIMPLEROOT data/tusimple

For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

python tools/dataset_converts/generate_seg_tusimple.py --root $TUSIMPLEROOT

CULane

Download CULane. Then extract them to $CULANEROOT. Create link to data directory.

cd $LANEDET_ROOT
mkdir -p data
ln -s $CULANEROOT data/CULane

For CULane, you should have structure like this:

$CULANEROOT/driver_xx_xxframe    # data folders x6
$CULANEROOT/laneseg_label_w16    # lane segmentation labels
$CULANEROOT/list                 # data lists

LLAMAS

Download LLAMAS. Then extract them to $LLAMASROOT. Create link to data directory.

cd $LANEDET_ROOT
mkdir -p data
ln -s $LLAMASROOT data/llamas

Train & inference

# train
bash tools/dist_train.sh /path_to_your_config 8
# inference
bash tools/dist_test.sh /path_to_your_config /path_to_your_pth 8 --eval mAP

Results

Results on Tusimple

Model Setting BatchSize Lr Schd Acc F1 Config Download
LaneATT r18 4(gpus) * 8 100 epochs 95.85 96.69 config model/log
CLRNet r18 4(gpus) * 8 70 epochs 96.81 97.63 config model/log
BezierLaneNet r18 4(gpus) * 8 400 epochs 95.79 96.24 config model/log
GANet r18 4(gpus) * 8 70 epochs 95.99 97.23 config model/log

Results on CuLane

Model Setting BatchSize Lr Schd F1@50 F1@75 mF1 Config Download
CLRNet r18 4(gpus) * 8 15 epochs 79.32 62.04 55.02 config model/log
CondLane r18 2(gpus) * 4 16 epochs 77.99 57.48 51.42 config model/log
BezierLaneNet r18 4(gpus) * 8 36 epochs 73.11 44.43 42.41 config model/log
LaneATT r18 4(gpus) * 8 15 epochs 76.31 53.01 48.19 config model/log

Results on LLAMAS(val)

Model Setting BatchSize Lr Schd F1@50 F1@75 mF1 Config Download
CLRNet r18 4(gpus) * 8 20 epochs 96.68 85.63 71.51 config model/log

Notes:

I don't have enough time to do all the experiments and optimize the parameters, so some of the results are not fully aligned. I would like to have partners on board to help optimize this project.

DALNet

Results on DL-Rail

Model Setting BatchSize Lr Schd F1@50 F1@75 mF1
BezierLaneNet r18 4(gpus) * 8 400 epochs 85.13 38.62 42.81
GANet r18 4(gpus) * 8 70 epochs 95.68 62.01 57.64
CondaLaneNet r18 4(gpus) * 8 70 epochs 95.10 53.10 52.37
UFLD r18 4(gpus) * 8 70 epochs 93.67 57.74 53.50
LaneATT r18 4(gpus) * 8 70 epochs 93.82 58.97 55.57
DALNet r18 4(gpus) * 8 70 epochs 96.43 65.48 59.79

Demo

Youtube/BiliBili

DL-Rail dataset

Aliyundirve: https://www.alipan.com/s/n1HV3tFpWCF

Acknowledgement

Many thanks to the authors of mmdetection, lanedet and pytorch-auto-drive.

Citation

If you find mmLaneNet or DALNet is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@article{yu2023dalnet,
  title={DALNet: A Rail Detection Network Based on Dynamic Anchor Line},
  author={Zichen Yu and Quanli Liu and Wei Wang and Liyong Zhang and Xiaoguang Zhao},
  journal={arXiv preprint arXiv:2308.11381},
  year={2023}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0