8000 GitHub - YunzhouYang/basevar: Call variants for large scale of ultra low-pass (<1.0x) WGS data, especially for NIPT data.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Call variants for large scale of ultra low-pass (<1.0x) WGS data, especially for NIPT data.

Notifications You must be signed in to change notification settings

YunzhouYang/basevar

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BaseVar

Call variants for ultra low-pass (<1.0x) WGS data, especially for NIPT data.

Prerequisites

BaseVar requires HTSlib 1.3(or later) and Cython. You should install Cython before build BaseVar.

pip install cython

HTSlib can be downloaded from the htslib web site.

To build and install HTSlib, cd into HTSlib source and type make install. This will install HTSlib under /usr/local/ (see note below). To install HTSlib in any other directory use make install prefix=/path/to/dir.

NOTE: HTSlib should be installed in a standard location (e.g. /usr/local/).

If not installed in a standard location, you will need to set your library paths:

For GNU/Linux

export C_INCLUDE_PATH=/path/to/dir/include
export LIBRARY_PATH=/path/to/dir/lib
export LD_LIBRARY_PATH=/path/to/dir/lib

Note the /include and /lib sub-directories. e.g. if you installed HTSlib under /Users/me/htslib then set

export C_INCLUDE_PATH=/Users/me/htslib/include
export LIBRARY_PATH=/Users/me/htslib/lib
export LD_LIBRARY_PATH=/Users/me/htslib/lib

HTSlib will automatically make the include and lib directories on install.

For OSX

export C_INCLUDE_PATH=/path/to/dir/include
export LIBRARY_PATH=/path/to/dir/lib
export DYLD_FALLBACK_LIBRARY_PATH=/path/to/dir/lib

Installation

To build BaseVar, do the following:

git clone https://github.com/ShujiaHuang/basevar.git

Then do

$ cd basevar
$ python setup.py install

Now you can use basevar in your commandline.

Quick start

Call variants from several bamfiles

basevar basetype -R reference.fasta \
    --regions chr11:5246595-5248428,chr17:41197764-41276135 \
    --batch-count 50 \
    -I 00alzqq6jw.bam \
    -I 09t3r9n2rg.bam \
    -I 0fkpl1p55b.bam \
    -I 13dg1gvsfk.bam \
    -I 17phildszl.bam \
    -I 1dbpgqt0dq.bam \
    -I 1kyws27hoc.bam \
    --output-vcf test.vcf.gz \
    --output-cvg test.cvg.tsv.gz \
    --nCPU 4 && echo "** 5 done **"

Or call variants from bamlist

basevar basetype -R reference.fasta \
    --regions chr11:5246595-5248428,chr17:41197764-41276135 \
    --batch-count 50 \
    -L bamfile.list \
    --output-vcf test.vcf.gz \
    --output-cvg test.cvg.tsv.gz \
    --nCPU 4 && echo "** 5 done **"

About

Call variants for large scale of ultra low-pass (<1.0x) WGS data, especially for NIPT data.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.9%
  • C 1.2%
  • Other 0.9%
0