8000 GitHub - Xv-M-S/GameState-MM: The code of XJTU_MM for SoccerNet2024 GameState
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

The code of XJTU_MM for SoccerNet2024 GameState

License

Notifications You must be signed in to change notification settings

Xv-M-S/GameState-MM

Repository files navigation

GameState-MM

The code of XJTU_MM for SoccerNet2024 GameState

Our Method

The method is shown in the report of Optimizing Jersey Number Recognition for Effective Player Tracking in the Game State Reconstruction

Rank Results

The leaderboard of SoccerNet2024 GameState

Rank Participant team GS-HOTA (↑) GS-DetA (↑) GS-AssA (↑) Last submission at
1 Constructor tech 55.82 41.67 74.86 2 months ago
2 UPCxMobius 42.19 30.83 57.78 2 months ago
3 XJTU_MM (JNR) 31.17 19.95 48.74 2 months ago
4 VIPLab 29.59 17.82 49.18 2 months ago
5 playbox x NUSG 23.27 9.59 56.45 2 months ago
6 Eidos 22.32 10.53 47.37 3 months ago
7 Host_17134_Team (GSR-Baseline) 22.26 10.67 46.46 5 months ago

Installation guide

Clone the repository

git clone https://github.com/Xv-M-S/GameState-MM.git

Manage the environment

Create and activate a new environment

conda create -n tracklab pip python=3.10 pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.7 -c pytorch -c nvidia -y
conda activate tracklab

Install the dependencies for tracklab

cd tracklab/plugins/track
pip install -e . -i https://pypi.org/simple  # note:使用pip的默认源安装

cd tracklab
pip install -e . -i https://pypi.org/simple  # note 使用pip默认源安装
mim install mmcv==2.0.1

Install the dependencies for sn-gamestate

cd sn-gamestate/plugins/calibration
pip install -e . -i https://pypi.org/simple  # note 使用pip默认源安装

cd sn-gamestate
pip install -e . -i https://pypi.org/simple  # note 使用pip默认源安装

Manual downloading of SoccerNet-gamestate

If you want to download the dataset manually, you can run the following snippet after installing the soccernet package (pip install SoccerNet) :

from SoccerNet.Downloader import SoccerNetDownloader
mySoccerNetDownloader = SoccerNetDownloader(LocalDirectory="data/SoccerNetGS")
mySoccerNetDownloader.downloadDataTask(task="gamestate-2024",
                                       split=["train", "valid", "test", "challenge"])

After running this code, please unzip the folders, so that the data looks like :

data/
   SoccerNetGS/
      train/
      valid/
      test/
      challenge/

You can unzip them with the following command line :

cd data/SoccerNetGS
unzip gamestate-2024/train.zip -d train
unzip gamestate-2024/valid.zip -d valid
unzip gamestate-2024/test.zip -d test
unzip gamestate-2024/challenge.zip -d challenge
cd ../..

External dependencies

  • DATA: You will need to set up some variables before running the code in soccernet.yaml(sn_gamestate/configs/soccernet.yaml)
    • data_dir: the directory where you will store the different datasets (must be an absolute path !). If you opted for the automatic download option, data_dir should already point to the correct location.
  • MODEL: Download the pretrained model weights here and put the "pretrained_models" directory under the main project directory (i.e. "/path/to/tracklab/pretrained_models/reid").
  • YoloModel: Dowlaod the pretrained YOLOv8 model weights here and put the "yolov8x6.pt" file under the main project directory (i.e. "/path/to/tracklab/pretrained_models/yolo").

Setup

cd sn-gamestate
python -m tracklab.main -cn soccernet

About

The code of XJTU_MM for SoccerNet2024 GameState

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0