8000 GitHub - Waikato/meka at meka-1.9.0
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Waikato/meka

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Meka Version 1.9.0

See the Tutorial.pdf for detailed information on obtaining, using and extending MEKA. For a list of included methods and 'quick-start' command line examples, see: http://meka.sourceforge.net/methods.html

Improvements since the last version are as follows.

Release Notes, Version 1.9.0

  • MEKA's build has been switched over from Apache Ant to Apache Maven.

    • Note: this change affects people working with the source code.
    • It makes life easier with deploying artifacts to Maven Central automatically
    • Better execution of unit tests.
  • The Evaluation framework has been heavily reworked

    • Evaluation output has been improved, as much in the code as the visual text output (now prettier!).
    • AUPRC and AUROC are added as evaluation metrics
    • AUPRC and AUROC can be visualised with the 'Show ...' options under the right-click menu of the History panel.
    • Objects like doubles[] can be stored in Results, rather than just Strings and Doubles.
    • In particular there are improvements to cross validation and incremental validation.
    • Cross-fold evaluation now combines all predictions together and then evaluates it (rather than averaging the statistics afterwards).
    • Incremental evaluation is basic prequential (interleaved train then test) with a GUI option for the number of samples
    • Incremental validation displays metrics in the GUI sampled over time in addition to those overall. These can be plotted with by selecting 'Incremental Performance' from the right-click menu in the History panel.
    • Note the earlier incremental evaluation scheme (which was window-based prequential) is also still available.
  • The seed used to randomize a dataset is no longer passed on to Randomizeable classifiers -- they must use their own.

    • This means that the results of the Randomizeable classifiers will be different to earlier versions of MEKA when a dataset is randomized (of course, the result should not be statistically significant).
  • It is easier now to add new functionality to Result History objects.

    • The Classify tab now automatically discovers its result history plugins at runtime.
    • These have to be derived from meka.gui.explorer.classify.AbstractClassifyResultHistoryPlugin and placed in the meka.gui.explorer.classify package.
    • New functionality (Show Graph, Save Graph, Save Model, Save CSV, Incremental Performance, Show ROC, Show PRC, etc.) is using this architecture
  • The Explorer tabs are now plugins and get discovered dynamically at runtime.

    • This makes it easy for other people to add more tabs (i.e., meka packages), simply derived from meka.gui.explorer.AbstractExplorerTab and placed in the meka.gui.explorer package.
  • A GUIChooser class is now available: meka.gui.guichooser.GUIChooser

    • This allows the selection of either the Explorer (the interface which has existed until now) and the new Experimenter interface.
    • It features dynamic discovery of menu items as well:
      • They need to be derived from meka.gui.guichooser.AbstractMenuItemDefinition and placed in package meka.gui.guichooser.
      • If you want a "shortcut" button like the Explorer menu definition has, simply let the isShortcutButton() method return true.
      • See the code for examples.
  • Meka now has an Experimenter

    • The experimenter is still 'experimental' at the moment.
    • It is not based directly on WEKA's experimenter, but should be relatively intuitive to people that have used it.
    • See ExperimentExample.java for an example of how to do this on the command line.
    • New documentation on how to use it is in the Tutorial
  • The MultilabelClassifier class has been (more appropriately) renamed ProblemTransformationMethod, and there is now a MultiLabelClassifier Interface.

    • Methods like MajorityLabelsetClassifier now implement MultilabelClassifier. Most others are ProblemTransformationMethods
  • Tool tips and get/set options thoroughly elabourated throughout classifiers, and respective javadoc comments cleaned up

  • Tutorial updated to reflect changes

  • A number of minor bug fixes, e.g.,

    • bug fixed in PSt when empty labelset appears
    • some related issues in SNN where also fixed

About

Multi-label classifiers and evaluation procedures using the Weka machine learning framework.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 6

0