[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

VivienCabannes/laplacian

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KLAP: Galerkin spectral decomposition

Topic:Fast Implementation of Galerkin eigenvectors and eigenvalues estimation with kernel methods developped in [PIL20], [CAB21], [PIL23], [CAB23].
Author: Vivien Cabannes
Nighly Version:0.0.3
Stable Version:0.0.2 of 2023/03/21

Installation

From wheel

You can download our package from its pypi repository.

$ pip install klap

From source

You can download source code at https://github.com/VivienCabannes/laplacian/archive/master.zip. Once download, our packages can be install through the following command.

$ cd <path to code folder>
$ pip install -e .

The -e option is notably useful to add kernel and modify the codebase.

Usage

See notebooks folder.

Package Requirements

Most of the code is based on the following python libraries:
  • scipy
  • numpy
  • numba
Testing done with notebook are based on:
  • jupyter-notebook
  • matplotlib
  • pandas

The code could easily be rewritten for pytorch (with jit support). For generalized eigenvalues decomposition, see torch.lobpcg.

References

[PIL20]Statistical estimation of the poincaré constant and application to sampling multimodal distributions, Loucas Pillaud-Vivien, Francis Bach, Tony Lelièvre, Alessandro Rudi, Gabriel Stoltz, AISTATS, 2020.
[CAB21]Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning, Vivien Cabannes, Loucas Pillaud-Vivien, Francis Bach and Alessandro Rudi, NeurIPS, 2021.
[PIL23]Kernelized Diffusion maps, Loucas Pillaud-Vivien and Francis Bach, COLT, 2023.
[CAB23]The Galerkin method beats Graph-Based Approaches for Spectral Algorithms, Vivien Cabannes and Francis Bach, AISTATS, 2024.

About

Fast Laplacian estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published