8000 GitHub - PanXiebit/dynamic_temporal_fusion
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

PanXiebit/dynamic_temporal_fusion

Repository files navigation

dynamic_temporal_fusion

baseline

与原论文一致。

baseline
log file /home/panxie/workspace/sign-lang/baseline/log/reimp-conv/train_seed8_log.txt, train-2_seed8_log.txt
best wer epoch26,wer:29.2
lr schedule halve at 40/60 epoch
seed 8
model baseline
log file /home/panxie/workspace/sign-lang/unlikeli_ctc/log/reimp-conv/train_origin_log.txt, train_origin_2_log.txt
best wer epoch: 26, wer:27.2
lr schedule halve at 40/60 epoch
baseline
log file train_video_len-2_seed8_log.txt
best wer epoch26,wer:27.5
lr schedule halve at 40/60 epoch
seed 8
len_video的计算有问题。。。改进之后总算能得到不错的效果了。

dynamic + local self-attention

model full_conv_v3
module full_conv + Encoder(1 layer)
log file train_v3_pre0.00001_attn0.0001_seed8_log.txt
best wer epoch: 6, wer: 27.7
local attn layer 1 layer
pretrain load backbone and other module. and their lr is 1e-5. lr of the attention layer is 1e-4.

可以试试 from scratch 的情况

dynamic framing + rnn

full_model_v5: full_conv + dynamic framing + rnn

model full_model_v5, with residual connection
log file train_v5_load_backbone_2_seed8_log.txt, train_v5_load_backbone_2-2_seed8_log.txt
best wer epoch16, 29.4
pretrain load backbone and freeze.
model full_model_v5, with residual connection
module full_conv + dynamic framing + rnn
log file train_v5_scratch_seed8_log.txt
best wer epoch: 69, 28.0
pretrain from scratch
model full_model_v5, without residual connection
log file train_v5_scratch_no_residual_seed8_log.txt
best wer epoch: 25, 36.2. Abanbon!
pretrain from scratch
model full_model_v5, with residual connection, len_video
module full_conv + dynamic framing + rnn
log file train_v5_video_len_seed8_log.txt
best wer epoch: 59, 26.3
pretrain from scratch

dynamic framing + rnn + random sample

model full_conv_v6, random sample after framing
module TemporalAttention4 + conv1d + conv1d(no pooling)
log file train_v6_dev_uniform_seed8_log.txt
best wer epoch 86, wer: 29.9
model full_conv_v6 + residual, random sample after framing
module TemporalAttention4 + conv1d + conv1d(no pooling)
log file train_v6_dev_uniform_residual_seed8_log.txt
best wer epoch 17, wer: 38.7, Abanbon! overfitting.

dynamic framing + rnn + random sample + tcn

model full_conv_v7, full_conv_v6 + tcn
module TemporalAttention4 + tcn + tcn(no pooling)
log file .txt
best wer epoch , wer:

dynamic framing + rnn + hash_map + tcn

model full_conv_v8, full_conv_v7 + hash_map
module TemporalAttention4 + tcn + tcn(no pooling)
log file train_v8_seed8_log.txt
best wer epoch 16, wer: 44.2. Abanbon!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0