8000 Support hybrid_parallel_topo_order for auto parallel Llama by From00 · Pull Request #8011 · PaddlePaddle/PaddleNLP · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Support hybrid_parallel_topo_order for auto parallel Llama #8011

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions llm/llama/auto_parallel/run_pretrain_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -404,13 +404,18 @@ def init_seed(seed: int = 1234, args=None):
else:
assert not args.use_hybrid_parallel and args.enable_auto_parallel
if dist.get_world_size() > 1:
if args.hybrid_parallel_topo_order is None or args.hybrid_parallel_topo_order == "pp_first":
order = ["pp", "dp", "sharding", "mp", "sep"]
elif args.hybrid_parallel_topo_order == "sharding_first":
order = ["dp", "sharding", "pp", "mp", "sep"]
topo = Topology(
dist.get_rank(),
dist.get_world_size(),
dp_degree=args.data_parallel_degree,
pp_degree=args.pipeline_parallel_degree,
mp_degree=args.tensor_parallel_degree,
sharding_degree=1, # auto_parallel's sharding is not orthogonal with dp, mp and pp
order=order,
)

global_seed, local_seed, random_seed = _get_distributed_seeds(args.seed, topo)
Expand Down
5 changes: 5 additions & 0 deletions llm/llama/auto_parallel/run_pretrain_auto_static.py
Original file line number Diff line number Diff line change
Expand Up @@ -414,13 +414,18 @@ def init_seed(seed: int = 1234, args=None):
else:
assert not args.use_hybrid_parallel and args.enable_auto_parallel
if dist.get_world_size() > 1:
if args.hybrid_parallel_topo_order is None or args.hybrid_parallel_topo_order == "pp_first":
order = ["pp", "dp", "sharding", "mp", "sep"]
elif args.hybrid_parallel_topo_order == "sharding_first":
order = ["dp", "sharding", "pp", "mp", "sep"]
topo = Topology(
dist.get_rank(),
dist.get_world_size(),
dp_degree=args.data_parallel_degree,
pp_degree=args.pipeline_parallel_degree,
mp_degree=args.tensor_parallel_degree,
sharding_degree=1, # auto_parallel's sharding is not orthogonal with dp, mp and pp
order=order,
)

global_seed, local_seed, random_seed = _get_distributed_seeds(args.seed, topo)
Expand Down
71 changes: 42 additions & 29 deletions paddlenlp/ops/distributed/utils/topo.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,42 +21,55 @@

class Topology:
def __init__(
self, device_rank, world_size, dp_degree=None, pp_degree=1, sharding_degree=1, mp_degree=1, sep_degree=1
self,
device_rank,
world_size,
dp_degree=None,
pp_degree=1,
sharding_degree=1,
mp_degree=1,
sep_degree=1,
order=["dp", "pp", "sharding", "mp", "sep"],
):
arr = np.arange(0, dp_degree * pp_degree * sharding_degree * mp_degree * sep_degree).reshape(
[dp_degree, pp_degree, sharding_degree, mp_degree, sep_degree]
)

dp_rank, pp_rank, sharding_rank, mp_rank, sep_rank = np.where(arr == device_rank)
dp_rank = dp_rank[0]
pp_rank = pp_rank[0]
sharding_rank = sharding_rank[0]
mp_rank = mp_rank[0]
sep_rank = sep_rank[0]

self.world = GroupInfo(size=world_size, rank=device_rank, world=list(range(0, world_size)))
assert set(order) == {"dp", "pp", "sharding", "mp", "sep"}, f"Illegal order : {order}"
self.order = order

sep_world = arr[dp_rank, pp_rank, sharding_rank, mp_rank, :]
self.sep_info = GroupInfo(size=len(sep_world), rank=sep_rank, world=sep_world.tolist())
degree_map = {
"dp": dp_degree,
"pp": pp_degree,
"sharding": sharding_degree,
"mp": mp_degree,
"sep": sep_degree,
}
shape = [degree_map[key] for key in self.order]

mp_world = arr[dp_rank, pp_rank, sharding_rank, :, sep_rank]
self.mp_info = GroupInfo(size=len(mp_world), rank=mp_rank, world=mp_world.tolist())
arr = np.arange(0, dp_degree * pp_degree * sharding_degree * mp_degree * sep_degree).reshape(shape)
ranks = [rank[0] for rank in np.where(arr == device_rank)]

sharding_world = arr[dp_rank, pp_rank, :, mp_rank, sep_rank]
self.sharding_info = GroupInfo(size=len(sharding_world), rank=sharding_rank, world=sharding_world.tolist())

pp_world = arr[dp_rank, :, sharding_rank, mp_rank, sep_rank]
self.pp_info = GroupInfo(size=len(pp_world), rank=pp_rank, world=pp_world.tolist())

dp_world = arr[:, pp_rank, sharding_rank, mp_rank, sep_rank]
self.dp_info = GroupInfo(size=len(dp_world), rank=dp_rank, world=dp_world.tolist())
self.world = GroupInfo(size=world_size, rank=device_rank, world=list(range(0, world_size)))
worlds = []
for i in range(len(ranks)):
indexs = tuple(ranks[:i] + [slice(None)] + ranks[(i + 1) :])
worlds.append(arr[indexs])

for i, key in enumerate(self.order):
if key == "dp":
self.dp_info = GroupInfo(size=len(worlds[i]), rank=ranks[i], world=worlds[i].tolist())
elif key == "pp":
self.pp_info = GroupInfo(size=len(worlds[i]), rank=ranks[i], world=worlds[i].tolist())
elif key == "sharding":
self.sharding_info = GroupInfo(size=len(worlds[i]), rank=ranks[i], world=worlds[i].tolist())
elif key == "mp":
self.mp_info = GroupInfo(size=len(worlds[i]), rank=ranks[i], world=worlds[i].tolist())
elif key == "sep":
self.sep_info = GroupInfo(size=len(worlds[i]), rank=ranks[i], world=worlds[i].tolist())

self.is_last = self.pp_info.rank == self.pp_info.size - 1

data_arr = np.arange(0, dp_degree * sharding_degree).reshape([dp_degree, sharding_degree])
data_arr = np.expand_dims(data_arr, axis=1).repeat(pp_degree, axis=1)
data_arr = np.expand_dims(data_arr, axis=3).repeat(mp_degree, axis=3)
data_arr = np.expand_dims(data_arr, axis=4).repeat(sep_degree, axis=4)
for i, key in enumerate(self.order):
if key != "dp" and key != "sharding":
data_arr = np.expand_dims(data_arr, axis=i).repeat(degree_map[key], axis=i)

self.data_info = GroupInfo(
size=int(self.dp_info.size * self.sharding_info.size),
Expand All @@ -68,4 +81,4 @@ def __init__(
self.data_inner_times = self.world.size // self.data_info.size

def __repr__(self):
return f"dp_info:\n\t {self.dp_info}, \npp_info:\n\t {self.pp_info}, \nsharding_info:\n\t {self.sharding_info}, \nmp_info:\n\t {self.mp_info}, \nsep_info:\n\t {self.sep_info}\ndata_info:\n\t {self.data_info}"
return f"dp_info:\n\t {self.dp_info}, \npp_info:\n\t {self.pp_info}, \nsharding_info:\n\t {self.sharding_info}, \nmp_info:\n\t {self.mp_info}, \nsep_info:\n\t {self.sep_info}, \ndata_info:\n\t {self.data_info}, \norder:\n\t {self.order}"
22 changes: 16 additions & 6 deletions paddlenlp/trainer/training_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -917,6 +917,10 @@ def __post_init__(self):
self.pipeline_parallel_degree = -1
self.sep_parallel_degree = -1

if self.hybrid_parallel_topo_order is None:
self.hybrid_parallel_topo_order = "pp_first"
assert self.hybrid_parallel_topo_order in ["pp_first", "sharding_first"]

if self.use_hybrid_parallel and self.enable_auto_parallel:
self.use_hybrid_parallel = False

Expand Down Expand Up @@ -1043,10 +1047,6 @@ def __post_init__(self):
"by current version of Paddle. Please try latest develop Paddle."
)

if self.hybrid_parallel_topo_order is None:
self.hybrid_parallel_topo_order = "pp_first"
assert self.hybrid_parallel_topo_order in ["pp_first", "sharding_first"]

def is_segment_parallel_supported():
import inspect

Expand Down Expand Up @@ -1288,17 +1288,27 @@ def is_segment_parallel_supported():
recompute.refined_ops_patterns.append(eval(pattern))

self.strategy = strategy
order = ["dp", "pp", "mp"]
degree = [self.data_parallel_degree, self.pipeline_parallel_degree, self.tensor_parallel_degree]
if self.hybrid_parallel_topo_order == "pp_first":
order = ["pp", "dp", "mp"]
degree = [self.pipeline_parallel_degree, self.data_parallel_degree, self.tensor_parallel_degree]
elif self.hybrid_parallel_topo_order == "sharding_first":
order = ["dp", "pp", "mp"]
degree = [self.data_parallel_degree, self.pipeline_parallel_degree, self.tensor_parallel_degree]
mesh_dims = list(zip(order, degree))
fleet.auto.create_mesh(mesh_dims)

# init hcg for communication in trainer
if self.hybrid_parallel_topo_order == "pp_first":
order = ["pp", "dp", "sharding", "sep", "mp"]
elif self.hybrid_parallel_topo_order == "sharding_first":
order = ["dp", "sharding", "pp", "sep", "mp"]

strategy = fleet.DistributedStrategy()
strategy.hybrid_configs = {
"dp_degree": self.data_parallel_degree,
"mp_degree": self.tensor_parallel_degree,
"pp_degree": self.pipeline_parallel_degree,
"order": order,
}
fleet.init(is_collective=True, strategy=strategy)

Expand Down
2 changes: 1 addition & 1 deletion paddlenlp/transformers/llama/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ def swiglu(x, y=None):
def get_mesh(pp_idx=0):
mesh = fleet.auto.get_mesh()
if "pp" in mesh.dim_names:
mesh = mesh.get_mesh_with_dim("pp")[pp_idx]
mesh = mesh.get_mesh_with_dim("pp", pp_idx)
return mesh


Expand Down
18 changes: 9 additions & 9 deletions scripts/distribute/ci_case_auto.sh
Original file line number Diff line number Diff line change
Expand Up @@ -965,7 +965,7 @@ function llama_static_auto_recompute_bs16_fp32_DP2-MP1-PP1() {
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
loss_base=9.42011845
loss_base=9.42011833
ips_base=-1
mem_base=-1
check_result $FUNCNAME ${loss_base} ${loss} ${ips_base} ${ips} ${mem_base} ${mem}
Expand Down Expand Up @@ -1031,7 +1031,7 @@ function llama_static_auto_recompute_bs16_fp32_DP2-MP2-PP1() {
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
loss_base=9.44299495
loss_base=9.44299471
ips_base=-1
mem_base=-1
check_result $FUNCNAME ${loss_base} ${loss} ${ips_base} ${ips} ${mem_base} ${mem}
Expand Down Expand Up @@ -1093,7 +1093,7 @@ function llama_static_auto_recompute_bs16_fp32_DP2-MP2-PP2() {
--data_impl "mmap" \
--enable_auto_parallel 1 \
>>${log_path}/$FUNCNAME 2>&1
loss=`cat $case_log_dir/workerlog.2 | grep 'global_step: 10' | awk -F 'loss: ' '{print $2}' | awk -F ',' '{print $1}'`
loss=`cat $case_log_dir/workerlog.4 | grep 'global_step: 10' | awk -F 'loss: ' '{print $2}' | awk -F ',' '{print $1}'`
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
Expand Down Expand Up @@ -1161,7 +1161,7 @@ function llama_static_auto_recompute_bs16_fp32_DP2-MP2-PP2-VPP2-Sharding2_stage2
--data_impl "mmap" \
--enable_auto_parallel 1 \
>>${log_path}/$FUNCNAME 2>&1
loss=`cat $case_log_dir/workerlog.3 | grep 'global_step: 10' | awk -F 'loss: ' '{print $2}' | awk -F ',' '{print $1}'`
loss=`cat $case_log_dir/workerlog.4 | grep 'global_step: 10' | awk -F 'loss: ' '{print $2}' | awk -F ',' '{print $1}'`
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
Expand Down Expand Up @@ -1230,7 +1230,7 @@ function llama_static_auto_recompute_bs16_fp16_DP2-MP2-PP2-VPP2-Sharding2_stage2
--data_impl "mmap" \
--enable_auto_parallel 1 \
>>${log_path}/$FUNCNAME 2>&1
loss=`cat $case_log_dir/workerlog.3 | grep 'global_step: 10' | awk -F 'loss: ' '{print $2}' | awk -F ',' '{print $1}'`
loss=`cat $case_log_dir/workerlog.4 | grep 'global_step: 10' | awk -F 'loss: ' '{print $2}' | awk -F ',' '{print $1}'`
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
Expand Down Expand Up @@ -1301,7 +1301,7 @@ function llama_dygraph_auto_bs8_fp32_DP2() {
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
loss_base=9.52781677
loss_base=9.53389835
ips_base=-1
mem_base=-1
check_result $FUNCNAME ${loss_base} ${loss} ${ips_base} ${ips} ${mem_base} ${mem}
Expand Down Expand Up @@ -1368,7 +1368,7 @@ function llama_dygraph_auto_bs8_fp32_DP2-MP2() {
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
loss_base=9.40659046
loss_base=9.39066124
ips_base=-1
mem_base=-1
check_result $FUNCNAME ${loss_base} ${loss} ${ips_base} ${ips} ${mem_base} ${mem}
Expand Down Expand Up @@ -1435,7 +1435,7 @@ function llama_dygraph_auto_bs8_fp32_DP2-MP2-PP2() {
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
loss_base=9.38319206
loss_base=9.38235474
ips_base=-1
mem_base=-1
check_result $FUNCNAME ${loss_base} ${loss} ${ips_base} ${ips} ${mem_base} ${mem}
Expand Down Expand Up @@ -1503,7 +1503,7 @@ function llama_dygraph_auto_bs8_fp16_DP2-MP2-PP2() {
ips=-1
mem=-1
echo "result: loss=$loss ips=$ips mem=$mem"
loss_base=9.38341904
loss_base=9.38257694
ips_base=-1
mem_base=-1
check_result $FUNCNAME ${loss_base} ${loss} ${ips_base} ${ips} ${mem_base} ${mem}
Expand Down
0