8000 GitHub - LorenzoPeri17/PauliAlgebra: Module to deal with exact calculations of Pauli matrices
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Module to deal with exact calculations of Pauli matrices

License

Notifications You must be signed in to change notification settings

LorenzoPeri17/PauliAlgebra

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PauliAlgebra

win ubu mac

PauliAlgebra is a module to deal with exact calculations of Pauli matrices

The interface to the module is the class PauliVector that can be used to instantiate any 2x2 Hermitian matrix

from PauliAlgebra import PauliVector

M = PauliVector([
        1, # Identity
        2, # sigma x
        0, # sigma y
        1j # sigma z
    ])

PauliVector is fully compatible with sympy expressions!

Alternatively, the module exposes the standard matrices

  • Id : 2x2 Identity

  • sigma_x

  • sigma_y

  • sigma_z

  • sigma_plus

    sigma_plus = (sigma_x + 1j*sigma_y)/2 
    # ((0,1)
    #  (0,0))
  • sigma_minus = (sigma_x - 1j*sigma_y)/2

    sigma_minus = (sigma_x - 1j*sigma_y)/2 
    # ((0,0)
    #  (1,0))
  • P_up

    P_up = (Id + sigma_z)/2
    # ((1,0)
    #  (0,0))
  • P_down

    P_down = (Id - sigma_z)/2
    # ((0,0)
    #  (0,1))

Arithmetic Operations

PauliVector supports the following arithmetic operations:

  • Addition and subtraction with another PauliVector
  • Multiplication with a scalar or another PauliVector (performs matrix multiplication)
  • Division by a scalar

So the above example could have been written as

from PauliAlgebra import (
    Id,
    sigma_x,
    sigma_z
)

M = Id + 2*sigma_x + 1j*sigma_z

Commutators and Anticommutators

This module allows for fast adn exact computation of commutators and anticommutators of two PauliVector using the relationship

$$ \left(\vec{a} \cdot \vec{\sigma}\right)\left(\vec{b} \cdot \vec{\sigma}\right) = Id~ \left(\vec{a} \cdot\vec{b} \right) + i \left(\vec{a} \times\vec{b} \right) \cdot \vec{\sigma} $$

and the (anti)commutativity of dot and cross product.

A = sigma_x
B = sigma_y

commAB = PauliVector.commutator(A,B) # = 2j*sigma_z
anticommAB = PauliVector.anticommutator(A,B) # = 0

Exponentiation

PauliVector supports exponentiation with the standard formula

$$ \exp\left(i \theta \hat{n} \cdot \vec{\sigma} \right) = Id~ \cos{\theta} + i \hat{n} \cdot \vec{\sigma} \sin{\theta} $$

M = -1j*np.pi*sigma_x

expM = M.exponentiate() # == Id

Usage with sympy expressions

PauliVector is fully compatible with sympy expressions!

theta = sp.symbols(r'\theta')

M = (Id* sp.sin(theta) + sigma_z*sp.cos(theta))/sp.sqrt(2)

M.to_sp().applyfunc(sp.trigsimp)
# [sqrt(2)*sin(\theta + pi/4),                           0],
# [                         0, -sqrt(2)*cos(\theta + pi/4)]]

For complex expressions M.simplify() will simplify the Id, x,y, and z components

Going back to numpy or sympy

Once you are done performing algebra on a PauliVector you can turn it back into more common types

  • M.toMatrix() -> np.ndarray (shape==(2,2))
  • M.to_sp() -> sp.Matrix (shape==(2,2))

Installation

PauliAlgebra is available on pypi! It can be yours by simply

$ pip install PauliAlgebra

in the environment of your choice!

About

Module to deal with exact calculations of Pauli matrices

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0