8000 GitHub - Jittor/JDet: JDet is an object detection benchmark based on Jittor. Mainly focus on aerial image object detection (oriented object detection).
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ JDet Public

JDet is an object detection benchmark based on Jittor. Mainly focus on aerial image object detection (oriented object detection).

License

Notifications You must be signed in to change notification settings

Jittor/JDet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JDet

Introduction

JDet is an object detection benchmark based on Jittor, and mainly focus on aerial image object detection (oriented object detection).

Install

JDet environment requirements:

  • System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
  • Python version >= 3.7
  • CPU compiler (require at least one of the following)
    • g++ (>=5.4.0)
    • clang (>=8.0)
  • GPU compiler (optional)
    • nvcc (>=10.0 for g++ or >=10.2 for clang)
  • GPU library: cudnn-dev (recommend tar file installation, reference link)

Step 1: Install the requirements

git clone https://github.com/Jittor/JDet
cd JDet
python -m pip install -r requirements.txt

If you have any installation problems for Jittor, please refer to Jittor

Step 2: Install JDet

cd JDet
# suggest this 
python setup.py develop
# or
python setup.py install

If you don't have permission for install,please add --user.

Or use PYTHONPATH: You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JDet/python into .bashrc, and run

source .bashrc

Getting Started

Datasets

The following datasets are supported in JDet, please check the corresponding document before use.

DOTA1.0/DOTA1.5/DOTA2.0 Dataset: dota.md.

FAIR Dataset: fair.md

SSDD/SSDD+: ssdd.md

You can also build your own dataset by convert your datas to DOTA format.

Config

JDet defines the used model, dataset and training/testing method by config-file, please check the config.md to learn how it works.

Train

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=train

Test

If you want to test the downloaded trained models, please set resume_path={you_checkpointspath} in the last line of the config file.

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=test

Test on images / Visualization

You can test and visualize results on your own image sets by:

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=vis_test

You can choose the visualization style you prefer, for more details about visualization, please refer to visualization.md. Visualization

Build a New Project

In this section, we will introduce how to build a new project(model) with JDet. We need to install JDet first, and build a new project by:

mkdir $PROJECT_PATH$
cd $PROJECT_PATH$
cp $JDet_PATH$/tools/run_net.py ./
mkdir configs

Then we can build and edit configs/base.py like $JDet_PATH$/configs/retinanet.py. If we need to use a new layer, we can define this layer at $PROJECT_PATH$/layers.py and import layers.py in $PROJECT_PATH$/run_net.py, then we can use this layer in config files. Then we can train/test this model by:

python run_net.py --config-file=configs/base.py --task=train
python run_net.py --config-file=configs/base.py --task=test

Models

Models Dataset Sub_Image_Size/Overlap Train Aug Test Aug Optim Lr schd mAP Paper Config Download
S2ANet-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 74.11 arxiv config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip+ra90+bc - SGD 1x 76.40 arxiv config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip+ra90+bc+ms ms SGD 1x 79.72 arxiv config model
S2ANet-R101-FPN DOTA1.0 1024/200 Flip - SGD 1x 74.28 arxiv config model
Gliding-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 72.93 arxiv config model
Gliding-R50-FPN DOTA1.0 1024/200 Flip+ra90+bc - SGD 1x 74.93 arxiv config model
H2RBox-R50-FPN DOTA1.0 1024/200 flip - AdamW 1x 67.62 arxiv config model
RetinaNet-hbb-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.02 arxiv config model
RetinaNet-obb-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.07 arxiv config model
GWD-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.88 arxiv config model
KLD-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 69.10 arxiv config model
KFIoU-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 69.36 arxiv config model
FasterRCNN-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 69.631 arxiv config model
RoITransformer-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 73.842 arxiv config model
FCOS-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 70.40 ICCV19 config model
OrientedRCNN-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 75.62 ICCV21 config model
ReDet-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 76.23 arxiv config model pretrained
CSL-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 67.99 arxiv config model
RSDet-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 68.41 arxiv config model
ATSS-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 72.44 arxiv config model
Reppoints-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 56.34 arxiv config model

Notice:

  1. ms: multiscale
  2. flip: random flip
  3. ra: rotate aug
  4. ra90: rotate aug with angle 90,180,270
  5. 1x : 12 epochs
  6. bc: balance category
  7. mAP: mean Average Precision on DOTA1.0 test set

Plan of Models

✔️Supported 🕒Doing ➕TODO

  • ✔️ S2ANet
  • ✔️ Gliding
  • ✔️ RetinaNet
  • ✔️ Rotated RetinaNet
  • ✔️ Faster R-CNN
  • ✔️ SSD
  • ✔️ ROI Transformer
  • ✔️ FCOS
  • ✔️ Oriented R-CNN
  • ✔️ YOLOv5
  • ✔️ GWD
  • ✔️ KLD
  • ✔️ H2RBox
  • ✔️ KFIoU
  • ✔️ Localization Distillation
  • ✔️ ReDet
  • ✔️ CSL
  • ✔️ Reppoints
  • ✔️ RSDet
  • ✔️ ATSS
  • 🕒 R3Det
  • 🕒 Cascade R-CNN
  • 🕒 Oriented Reppoints
  • ➕ DCL
  • ➕ Double Head OBB
  • ➕ Guided Anchoring
  • ➕ Sampling Equivariant Self-attention Networks
  • ➕ ...

Plan of Datasets

✔️Supported 🕒Doing ➕TODO

  • ✔️ DOTA1.0
  • ✔️ DOTA1.5
  • ✔️ DOTA2.0
  • ✔️ SSDD
  • ✔️ SSDD+
  • ✔️ FAIR
  • ✔️ COCO
  • ➕ LS-SSDD
  • ➕ DIOR-R
  • ➕ HRSC2016
  • ➕ ICDAR2015
  • ➕ ICDAR2017 MLT
  • ➕ UCAS-AOD
  • ➕ FDDB
  • ➕ OHD-SJTU
  • ➕ MSRA-TD500
  • ➕ Total-Text
  • ➕ ...

Contact Us

Website: http://cg.cs.tsinghua.edu.cn/jittor/

Email: jittor@qq.com

File an issue: https://github.com/Jittor/jittor/issues

QQ Group: 761222083

The Team

JDet is currently maintained by the Tsinghua CSCG Group. If you are also interested in JDet and want to improve it, Please join us!

Citation

@article{hu2020jittor,
  title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
  author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
  journal={Science China Information Sciences},
  volume={63},
  number={222103},
  pages={1--21},
  year={2020}
}

Reference

  1. Jittor
  2. mmrotate
  3. Detectron2
  4. mmdetection
  5. maskrcnn_benchmark
  6. RotationDetection
  7. s2anet
  8. gliding_vertex
  9. oriented_rcnn
  10. r3det
  11. AerialDetection
  12. DOTA_devkit
  13. OBBDetection

About

JDet is an object detection benchmark based on Jittor. Mainly focus on aerial image object detection (oriented object detection).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0