8000 GitHub - IncheonYSH/DGM_pytorch: Pytorch implementation of disentangled generative model
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Pytorch implementation of disentangled generative model

Notifications You must be signed in to change notification settings

IncheonYSH/DGM_pytorch

Repository files navigation

[Pytorch] A disentangled generative model for disease decomposition in chest X-rays via normal image synthesis

This repository implements Disentangled Generative Model(DGM) with MIMIC-CXR dataset.

See also: Paper, tensorflow implementation

Data preprocessing

We only use PA sided and clearly labeled data.

Run the shell script bellow

python data_preprocess_all.py \
    --base_path <your/mimic-cxr-jpg/directory/ends/with/mimic-cxr-jpg/2.1.0/files> \
    --pa_base_path <your/pa_filetered_image/directory/ends/with/physionet.org/pa_filter/pa_filtered_images> \
    --csv_file </standard/test-train/split/in/mimic-cxr/mimic-cxr-2.0.0-split.csv> \
    --label_csv_file </your/mimic-cxr/chexpert/label/path/mimic-cxr-2.0.0-chexpert.csv> \
    --output_path </your/data/output/dir>

Then, 13 files would be created in your output directory. We will use labeled_train.txt, l 53DE abeled_validation.txt, labeled_test.txt in our training code.

Training

Run the shell script bellow

python train.py \
    --batch_size 64 \
    --d_steps 1 \
    --gpu <0 indexed gpu number> \
    --train_file_list </your/labeled_train.txt/file> \
    --val_file_list </your/labeled_validation.txt/file>

You could modify run script depend on your environment.

Result

Working..

About

Pytorch implementation of disentangled generative model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0