A companion repository to my video about MCP server for the robot:
- MCP Server for LLM-based AI agents (Claude Desktop, Cursor, Windsurf, etc.) to control the robot
- Direct keyboard control for manual operation
This repository suppose to work with the SO-ARM100 / 101 robots. Refer to lerobot SO-101 setup guide for the detailed instructions on how to setup the robot.
If you want to know more about MCP refer to the official MCP documentation
For simplicity I use simple pip instead of uv that is often recommended in MCP tutorials - it works just fine.
python -m venv .venv
source .venv/bin/activate # or .venv\Scripts\activate on Windows
pip install -r requirements.txt
It may be required to install lerobot separately, just use the official instructions from the lerobot repository
- Connect SO-ARM100 via USB
- Update
config.py
with your serial port (e.g.,/dev/tty.usbmodem58FD0168731
) - Connect cameras (optional but recommended) and update
config.py
with the correct indices
🔍 Check Robot Status:
python check_positions.py
This will show you the current robot state without actual control. Move your robot manually to make sure it is properly calibrated and configured.
🎮 Manual Keyboard Control:
python keyboard_controller.py
Now you can try to control the robot manually using the keyboard. Test it before moving on to the MCP step, to make sure it works properly.
🛠️ MCP server in the dev mode
mcp dev mcp_robot_server.py
Final test step - to debug the MCP server, use the UI to connect to it and try to send some requests.
🤖 AI Agent Control (MCP Server):
WARNING: using MCP server itself is free, but it requires MCP client that will send requests to some LLM. Generally it is not free - and controlling the robot with MCP can become expensive, as it sends multiple agentic requests with images that use a lot of tokens. Make sure you understand and control your token usage and corresponding costs before doing it. The actual cost depends on the client and models you use, and it is your responsibility to monitor and control it.
mcp run mcp_robot_server.py --transport SELECTED_TRANSPORT
Supports: stdio
, sse
, streamable-http
Now your server can be added to any MCP client.
Different clients can support different transports, you can choose the one that works best for you. The functionality is the same.
Add to your MCP configuration:
{
"mcpServers": {
"SO-ARM100 robot controller": {
"command": "/path/to/.venv/bin/python",
"args": ["/path/to/mcp_robot_server.py"]
}
}
}
Run the server in terminal with the SSE transport:
mcp run mcp_robot_server.py --transport sse
Add to your MCP configuration:
{
"mcpServers": {
"SO-ARM100 robot controller": {
"url": "http://127.0.0.1:3001/sse"
}
}
}
It is suppose to be a replacement for SSE but currently not so many clients support it.
Run the server in terminal with the Streamed-HTTP transport:
mcp run mcp_robot_server.py --transport streamable-http
Add to your MCP configuration:
{
"mcpServers": {
"SO-ARM100 robot controller": {
"url": "http://127.0.0.1:3001/mcp"
}
}
}
Now you can go to you Client and it should be able to control the robot when you give it the natural language instructions.