8000 GitHub - Helmholtz-AI-Energy/perun: Perun is a Python package that measures the energy consumption of you applications.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Helmholtz-AI-Energy/perun

Repository files navigation


perun is a Python package that calculates the energy consumption of Python scripts by sampling usage statistics from your Intel, Nvidia or AMD hardware components. It can handle MPI applications, gather data from hundreds of nodes, and accumulate it efficiently. perun can be used as a command-line tool or as a function decorator in Python scripts.

Check out the docs or a working example!

Key Features

  • Measures energy consumption of Python scripts and binaries, supporting different hardware configurations
  • Capable of handling MPI applications, gathering data from hundreds of nodes efficiently
  • Monitor individual functions using decorators
  • Tracks energy usage of the application over multiple executions
  • Easy to benchmark applications and functions
  • Experimental!: Can monitor any non-distributed command line application

Quick Start

Installation

From PyPI:

$ pip install perun

Extra dependencies like nvidia-smi, rocm-smi and mpi4py can be installed using pip as well:

$ pip install perun[nvidia, rocm, mpi]

From Github:

$ pip install git+https://github.com/Helmholtz-AI-Energy/perun

Command Line

To use perun as a command-line tool:

$ perun monitor path/to/your/script.py [args]

perun will output two files, an HDF5 style containing all the raw data that was gathered, and a text file with a summary of the results.

PERUN REPORT

App name: finetune_qa_accelerate
First run: 2023-08-15T18:56:11.202060
Last run: 2023-08-17T13:29:29.969779

RUN ID: 2023-08-17T13:29:29.969779

+-----------+------------------------+-----------+-------------+--------------+-------------+-------------+-------------+---------------+-------------+
| Round #   | Host                   | RUNTIME   | ENERGY      | CPU_POWER    | CPU_UTIL    | GPU_POWER   | GPU_MEM     | DRAM_POWER    | MEM_UTIL    |
+===========+========================+===========+=============+==============+=============+=============+=============+===============+=============+
| 0         | hkn0432.localdomain    | 995.967 s | 960.506 kJ  | 231.819 W    | 3.240 %     | 702.327 W   | 55.258 GB   | 29.315 W      | 0.062 %     |
| 0         | hkn0436.localdomain    | 994.847 s | 960.469 kJ  | 235.162 W    | 3.239 %     | 701.588 W   | 56.934 GB   | 27.830 W      | 0.061 %     |
| 0         | All                    | 995.967 s | 1.921 MJ    | 466.981 W    | 3.240 %     | 1.404 kW    | 112.192 GB  | 57.145 W      | 0.061 %     |

The application has been run 7 times. In total, it has used 3.128 kWh, released a total of 1.307 kgCO2e into the atmosphere, and you paid 1.02 € in electricity for it.

Binary support (experimental)

perun is capable of monitoring simple applications written in other languages:

$ perun monitor --binary path/to/your/executable [args]

Function Monitoring

Using a function decorator

import time
from perun import monitor

@monitor()
def main(n: int):
    time.sleep(n)

After running with perun monitor, the report will contain:

Monitored Functions

+-----------+----------------------------+---------------------+------------------+--------------------+------------------+-----------------------+
| Round #   | Function                   | Avg Calls / Rank    | Avg Runtime      | Avg Power          | Avg CPU Util     | Avg GPU Mem Util      |
+===========+============================+=====================+==================+====================+==================+=======================+
| 0         | main                       | 1                   | 993.323±0.587 s  | 964.732±0.499 W    | 3.244±0.003 %    | 35.091±0.526 %        |
| 0         | prepare_train_features     | 88                  | 0.383±0.048 s    | 262.305±19.251 W   | 4.541±0.320 %    | 3.937±0.013 %         |
| 0         | prepare_validation_features| 11                  | 0.372±0.079 s    | 272.161±19.404 W   | 4.524±0.225 %    | 4.490±0.907 %         |

MPI

perun is compatible with MPI applications using mpi4py:

$ mpirun -n 8 perun monitor path/to/your/script.py

Docs

See the documentation or examples for more details.

Citing perun

If you found perun useful, please cite the conference paper:

Gutiérrez Hermosillo Muriedas, J.P., Flügel, K., Debus, C., Obermaier, H., Streit, A., Götz, M.:
perun: Benchmarking Energy Consumption of High-Performance Computing Applications.
In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., and Sakellariou, R. (eds.)
Euro-Par 2023: Parallel Processing. pp. 17–31. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-39698-4_2
@InProceedings{10.1007/978-3-031-39698-4_2,
  author="Guti{\'e}rrez Hermosillo Muriedas, Juan Pedro
  and Fl{\"u}gel, Katharina
  and Debus, Charlotte
  and Obermaier, Holger
  and Streit, Achim
  and G{\"o}tz, Markus",
  editor="Cano, Jos{\'e}
  and Dikaiakos, Marios D.
  and Papadopoulos, George A.
  and Peric{\`a}s, Miquel
  and Sakellariou, Rizos",
  title="perun: Benchmarking Energy Consumption of High-Performance Computing Applications",
  booktitle="Euro-Par 2023: Parallel Processing",
  year="2023",
  publisher="Springer Nature Switzerland",
  address="Cham",
  pages="17--31",
  isbn="978-3-031-39698-4"
}

About

Perun is a Python package that measures the energy consumption of you applications.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 7

Languages

0