8000 GitHub - GillesVanDeVyver/GCN_multistructure: This repository contains the code of Van De Vyver, Gilles, et al. "Towards Robust Cardiac Segmentation using Graph Convolutional Networks." IEEE Access (2024).
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

This repository contains the code of Van De Vyver, Gilles, et al. "Towards Robust Cardiac Segmentation using Graph Convolutional Networks." IEEE Access (2024).

License

Notifications You must be signed in to change notification settings

GillesVanDeVyver/GCN_multistructure

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Towards Robust Cardiac Segmentation Using Graph Convolutional Networks (GCNs)

The GCN and nnU-Net segmentations are shown on the left and right side respectively. The color-coded status bar on top visualizes the agreement between the models. The full demo video is available at https://doi.org/10.6084/m9.figshare.24230194.

Publication & Citation

You should cite the following paper when using the code in this repository: Van De Vyver, Gilles, et al. "Towards Robust Cardiac Segmentation using Graph Convolutional Networks." IEEE Access (2024). https://ieeexplore.ieee.org/document/10458930

Blog post: https://gillesvandevyver.com/#/projects/finding-hearts

Quickstart

See QUICKSTART.md/ to get started with the default configuration.

Acknowledgements

This work extends the framework provided by

  • S. Thomas, A. Gilbert, and G. Ben-Yosef: “Light-weight spatio-temporal graphs for segmentation and ejection fraction prediction in cardiac ultrasound” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore https://github.com/guybenyosef/EchoGraphs.git

The code expands the model to multi structure segmentation and provides functionality to convert pixel-wise segmentation maps annotations to clinically motivated keypoint annotations.

Dataset

This repository contains code to train and test the GCN model on the CAMUS dataset. The CAMUS dataset is a publicly available dataset of 500 patients including Apical 2 Chamber (A2C) and Apical 4 Chamber (A4C) views obtained from a GE Vivid E95 ultrasound scanner, equalling 2000 image annotation pairs. The annotations are available as pixel-wise labels of the left ventricle (LV), left atrium (LA), and myocardium (MYO), split into 10 folds for cross-validation The CAMUS dataset is available at https://www.creatis.insa-lyon.fr/Challenge/camus/.

  • S. Leclerc, E. Smistad, J. Pedrosa, A. Østvik, F. Cervenansky, F. Espinosa, T. Espeland, E. A. R. Berg, P.-M. J 8024 odoin, T. Grenier et al., “Deep learning for segmentation using an open large-scale dataset in 2d echocardiography,”

Information on the CAMUS cross validation splits can be found in files/listSubGroups.

Architecture

plot The architecture of the GCN. The CNN encoder transforms the input ultrasound image of width W and height H to an embedded vector of size X. A dense layer transforms this embedding to an embedding in keypoint space, with 107 keypoints and C1 channels. The decoder consists of a sequence of graph convolutions over these keypoint embeddings. The final outputs are the 2D coordinates of the keypoints in the image.

Results

plot

Case analysis and comparison of the GCN with displacement method and nnU-Net on CAMUS. The cases are selected based on the overall Dice score between the annotation and the GCN or U-Net segmentations.

Environment

See INSTALL.md/ for environment setup.

Getting stated

See GETTING_STARTED.md to get started with training and testing the GCN model.

Code of the architecture as a modular entity

If you want to use the architecture in your own project, you can use the architecture as a modular entity as provided in https://github.com/gillesvntnu/GraphBasedSegmentation.git. The code in that repository contains the isolated code for the arhictecture only, so you can insert it in any PyTorch framework.

Real-time demo

For code of the real-time, c++ demo of inter model agreement, see https://github.com/gillesvntnu/GCN_UNET_agreement_demo.git

Contact

Developer:
https://gillesvandevyver.com/

Management:
lasse.lovstakken@ntnu.no
erik.smistad@ntnu.no

About

This repository contains the code of Van De Vyver, Gilles, et al. "Towards Robust Cardiac Segmentation using Graph Convolutional Networks." IEEE Access (2024).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0