8000 GitHub - Guepardow/Visual-features: Code of "An Empirical Analysis of Visual Features for Multiple Object Tracking in Urban Scenes"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Guepardow/Visual-features

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An Empirical Analysis of Visual Features for Multiple Object Tracking in Urban Scenes

Authors : Mehdi Miah, Justine Pepin, Nicolas Saunier & Guillaume-Alexandre Bilodeau
Polytechnique Montréal - 2020

[Project page] [arXiv paper] [ICPR 2020 paper]

visual_features

Objective

Rank visual features for multiple object tracking focused on urban scenes

Installation

Requirements

Linux and Windows supported. Python 3.6, Pytorch 1.4, CUDA 10.0

Clone repositories

cd src
git clone https://github.com/KaiyangZhou/deep-person-reid.git #(torchreid 1.2.7)
mv deep-person-reid/ deep_person_reid/
pip install efficientnet_pytorch
git clone https://github.com/cw1204772/AIC2018_iamai.git

Datasets

You can download the following datasets :

Change the path to data in the file ./src/dataset.py.

Weights

The weights for VGG-19, ResNet-18, DenseNet-121 come from Pytorch.

The weights for Efficient-B0 come from efficientnet_pytorch (automatically downloaded).

The weights for pedestrian ReID come from deep-person-reid

The weights for vehicles ReID come from AIC2018_iamai

Final structure of files

Expand tree structure
.
├─── doc
├─── results
│   ├─── figure
│   ├─── logs
├─── script
│   ├─── run_DETRAC.sh
│   ├─── run_MOT17.sh
│   ├─── run_UAVDT.sh
│   ├─── run_WildTrack.sh
├─── src
│   ├─── affinity.py
│   ├─── analysis_rank.py
│   ├─── analysis_size.py
│   ├─── appearances.py
│   ├─── dataset.py
│   ├─── main.py
│   ├─── utils.py
│   ├─── AIC2018_iamai
│   ├─── deep_person_reid
├─── weights
│   ├─── model_880_base.ckpt
│   ├─── osnet_ain_x1_0_market1501_256x128_amsgrad_ep100_lr0.0015_coslr_b64_fb10_softmax_labsmth_flip_jitter.pth

Run experiments

Compute the mean average precision on a specific scene with a chosen features and sigma :

python main.py --dataset=DETRAC --scene=20011 --feature=resnet18 --sigma=10

Compute the mean average precision on a whole dataset :

cd src ; bash ../script/run_DETRAC.sh

Analyze the ranking of features on a specific dataset :

python analysis_rank.py --dataset=DETRAC

Analyze effect of the size on features on a specific dataset :

python analysis_size.py --dataset=DETRAC

Results

Citation and acknowledgment

If you refer to this work, please cite :

@inproceedings{miah2020empirical,
    title = {An {Empirical} {Analysis} of {Visual} {Features} for {Multiple} {Object} {Tracking} in {Urban} {Scenes}},
    author = {Miah, Mehdi and Pepin, Justine and Saunier, Nicolas and Bilodeau, Guillaume-Alexandre},
    booktitle = {International {Conference} on {Pattern} {Recognition} ({ICPR})},
    year = {2020}
}

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [CRDPJ 528786 - 18], [DG 2017-06115] and the support of Arcturus Networks.

About

Code of "An Empirical Analysis of Visual Features for Multiple Object Tracking in Urban Scenes"

Resources

License

Stars

Watchers

Forks

0