GPU.js is a JavaScript Acceleration library for GPGPU (General purpose computing on GPUs) in JavaScript for Web and Node. GPU.js automatically transpiles simple JavaScript functions into shader language and compiles them so they run on your GPU. In case a GPU is not available, the functions will still run in regular JavaScript.
Creates a GPU accelerated kernel transpiled from a javascript function that computes a single element in the 512 x 512 matrix (2D array). The kernel functions are ran in tandem on the GPU often resulting in very fast computations! You can run a benchmark of this here. Typically, it will run 1-15x faster depending on your hardware. You can experiment around with the kernel playground here Matrix multiplication (perform matrix multiplication on 2 matrices of size 512 x 512) written in GPU.js:
<script src="bin/gpu-browser.min.js"></script>
<script>
// GPU is a constructor and namespace for browser
const gpu = new GPU();
const multiplyMatrix = gpu.createKernel(function(a, b) {
let sum = 0;
for (let i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
const c = multiplyMatrix(a, b);
</script>
const { GPU } = require('gpu.js');
const gpu = new GPU();
const multiplyMatrix = gpu.createKernel(function(a, b) {
let sum = 0;
for (let i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
const c = multiplyMatrix(a, b);
import { GPU } from 'gpu.js';
const gpu = new GPU();
const multiplyMatrix = gpu.createKernel(function(a: number[][], b: number[][]) {
let sum = 0;
for (let i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
const c = multiplyMatrix(a, b) as number[][];
NOTE: documentation is slightly out of date for the upcoming release of v2. We will fix it! In the mean time, if you'd like to assist (PLEASE) let us know.
- Installation
GPU
Settingsgpu.createKernel
Settings- Creating and Running Functions
- Accepting Input
- Graphical Output
- Combining Kernels
- Create Kernel Map
- Adding Custom Functions
- Adding Custom Functions Directly to Kernel
- Loops
- Pipelining
- Offscreen Canvas
- Cleanup
- Flattened typed array support
- Supported Math functions
- Typescript Typings
- Full API reference
- Automatically-built Documentation
- Contributors
- Contributing
- How possible in node
- Terms Explained
- License
npm install gpu.js --save
yarn add gpu.js
const { GPU } = require('gpu.js');
const gpu = new GPU();
import { GPU } from 'gpu.js';
const gpu = new GPU();
Download the latest version of GPU.js and include the files in your HTML page using the following tags:
<script src="bin/gpu-browser.min.js"></script>
<script>
const gpu = new GPU();
</script>
Settings are an object used to create an instance of GPU
. Example: new GPU(settings)
canvas
:HTMLCanvasElement
. Optional. For sharing canvas. Example: use THREE.js and GPU.js on same canvas.context
:WebGL2RenderingContext
orWebGLRenderingContext
. For sharing rendering context. Example: use THREE.js and GPU.js on same rendering context.mode
: Defaults to 'gpu', other values generally for debugging:- 'dev' New in V2!: VERY IMPORTANT! Use this so you can breakpoint and debug your kernel! This wraps your javascript in loops but DOES NOT transpile your code, so debugging is much easier.
- 'webgl': Use the
WebGLKernel
for transpiling a kernel - 'webgl2': Use the
WebGL2Kernel
for transpiling a kernel - 'headlessgl' New in V2!: Use the
HeadlessGLKernel
for transpiling a kernel - 'cpu': Use the
CPUKernel
for transpiling a kernel
Settings are an object used to create a kernel
or kernelMap
. Example: gpu.createKernel(settings)
output
: array or object that describes the output of kernel.- as array:
[width]
,[width, height]
, or[width, height, depth]
- as object:
{ x: width, y: height, z: depth }
- as array:
pipeline
New in V2!: boolean, default =false
- Causes
kernel()
calls to output aTexture
. To get array's from aTexture
, use:
const result = kernel(); result.toArray();
- Can be passed directly into kernels, and is preferred:
kernel(texture);
- Causes
graphical
: boolean, default =false
loopMaxIterations
: number, default = 1000constants
: object, default = nullhardcodeConstants
: boolean, default = falseoptimizeFloatMemory
New in V2!: boolean - causes a float32 texture to use all 4 channels rather than 1, using less memory, but consuming more GPU.precision
New in V2!: 'single' or 'unsigned' - if 'single' output texture uses float32 for each colour channel rather than 8fixIntegerDivisionAccuracy
: boolean - some cards have accuracy issues dividing by factors of three and some other primes (most apple kit?). Default on for affected cards, disable if accuracy not required.functions
: array, array of functions to be used inside kernel. If undefined, inherits fromGPU
instance.nativeFunctions
: object, defined as:{ functionName: functionSource }
- VERY IMPORTANT! - Use this to add special native functions to your environment when you need specific functionality is needed.
subKernels
: array, generally inherited fromGPU
instance.immutable
: boolean, default =false
Depending on your output type, specify the intended size of your output. You cannot have an accelerated function that does not specify any output size.
Output size | IKernelSettings.flipCoodrinates value |
How to specify output size | How to reference in kernel |
---|---|---|---|
1D | false |
[length] |
value[this.thread.x] |
2D | false |
[width, height] |
value[this.thread.y][this.thread.x] |
3D | false |
[width, height, depth] |
value[this.thr
F438
ead.z][this.thread.y][this.thread.x] |
1D | true |
[length] |
value[this.thread.x] |
2D | true |
[width, height] |
value[this.thread.x][this.thread.y] |
3D | true |
[width, height, depth] |
value[this.thread.x][this.thread.y][this.thread.z] |
const settings = {
output: [100]
};
or
// You can also use x, y, and z
const settings = {
output: { x: 100 }
};
Create the function you want to run on the GPU. The first input parameter to createKernel
is a kernel function which will compute a single number in the output. The thread identifiers, this.thread.x
, this.thread.y
or this.thread.z
will allow you to specify the appropriate behavior of the kernel function at specific positions of the output.
const kernel = gpu.createKernel(function() {
return this.thread.x;
}, settings);
The created function is a regular JavaScript function, and you can use it like one.
kernel();
// Result: Float32Array[0, 1, 2, 3, ... 99]
Note: Instead of creating an object, you can use the chainable shortcut methods as a neater way of specifying settings.
const kernel = gpu.createKernel(function() {
return this.thread.x;
}).setOutput([100]);
kernel();
// Result: Float32Array[0, 1, 2, 3, ... 99]
GPU.js makes variable declaration inside kernel functions easy. Variable types supported are: Numbers Array(2) Array(3) Array(4)
Numbers example:
const kernel = gpu.createKernel(function() {
const i = 1;
const j = 0.89;
return i + j;
}).setOutput([100]);
Array(2) examples: Using declaration
const kernel = gpu.createKernel(function() {
const array2 = [0.08, 2];
return array2;
}).setOutput([100]);
Directly returned
const kernel = gpu.createKernel(function() {
return [0.08, 2];
}).setOutput([100]);
Array(3) example: Using declaration
const kernel = gpu.createKernel(function() {
const array2 = [0.08, 2, 0.1];
return array2;
}).setOutput([100]);
Directly returned
const kernel = gpu.createKernel(function() {
return [0.08, 2, 0.1];
}).setOutput([100]);
Array(4) example: Using declaration
const kernel = gpu.createKernel(function() {
const array2 = [0.08, 2, 0.1, 3];
return array2;
}).setOutput([100]);
Directly returned
const kernel = gpu.createKernel(function() {
return [0.08, 2, 0.1, 3];
}).setOutput([100]);
- Numbers
- 1d,2d, or 3d Array of numbers
- Arrays of
Array
,Float32Array
,Int16Array
,Int8Array
,Uint16Array
,uInt8Array
- Arrays of
- Pre-flattened 2d or 3d Arrays using 'Input', for faster upload of arrays
- Example:
const { input } = require('gpu.js'); const value = input(flattenedArray, [width, height, depth]);
- HTML Image
- Array of HTML Images To define an argument, simply add it to the kernel function like regular JavaScript.
const kernel = gpu.createKernel(function(x) {
return x;
}).setOutput([100]);
kernel(42);
// Result: Float32Array[42, 42, 42, 42, ... 42]
Similarly, with array inputs:
const kernel = gpu.createKernel(function(x) {
return x[this.thread.x % 3];
}).setOutput([100]);
kernel([1, 2, 3]);
// Result: Float32Array[1, 2, 3, 1, ... 1 ]
An HTML Image:
const kernel = gpu.createKernel(function(image) {
const pixel = image[this.thread.y][this.thread.x];
this.color(pixel[0], pixel[1], pixel[2], pixel[3]);
})
.setGraphical(true)
.setOutput([100]);
const image = new document.createElement('img');
image.src = 'my/image/source.png';
image.onload = () => {
kernel(image);
// Result: colorful image
};
An Array of HTML Images:
const kernel = gpu.createKernel(function(image) {
const pixel = image[this.thread.z][this.thread.y][this.thread.x];
this.color(pixel[0], pixel[1], pixel[2], pixel[3]);
})
.setGraphical(true)
.setOutput([100]);
const image1 = new document.createElement('img');
image1.src = 'my/image/source1.png';
image1.onload = onload;
const image2 = new document.createElement('img');
image2.src = 'my/image/source2.png';
image2.onload = onload;
const image3 = new document.createElement('img');
image3.src = 'my/image/source3.png';
image3.onload = onload;
const totalImages = 3;
let loadedImages = 0;
function onload() {
loadedImages++;
if (loadedImages === totalImages) {
kernel([image1, image2, image3]);
// Result: colorful image composed of many images
}
};
Sometimes, you want to produce a canvas
image instead of doing numeric computations. To achieve this, set the graphical
flag to true
and the output dimensions to [width, height]
. The thread identifiers will now refer to the x
and y
coordinate of the pixel you are producing. Inside your kernel function, use this.color(r,g,b)
or this.color(r,g,b,a)
to specify the color of the pixel.
For performance reasons, the return value of your function will no longer be anything useful. Instead, to display the image, retrieve the canvas
DOM node and insert it into your page.
const render = gpu.createKernel(function() {
this.color(0, 0, 0, 1);
})
.setOutput([20, 20])
.setGraphical(true);
render();
const canvas = render.canvas;
document.getElementsByTagName('body')[0].appendChild(canvas);
Note: To animate the rendering, use requestAnimationFrame
instead of setTimeout
for optimal performance. For more information, see this.
To make it easier to get pixels from a context, use kernel.getPixels()
, which returns a flat array similar to what you get from WebGL's readPixels
method.
A note on why: webgl's readPixels
returns an array ordered differently from javascript's getImageData
.
This makes them behave similarly.
While the values may be somewhat different, because of graphical precision available in the kernel, and alpha, this allows us to easily get pixel data in unified way.
Example:
const render = gpu.createKernel(function() {
this.color(0, 0, 0, 1);
})
.setOutput([20, 20])
.setGraphical(true);
render();
const pixels = render.getPixels();
// [r,g,b,a, r,g,b,a...
Currently, if you need alpha do something like enabling premultipliedAlpha
with your own gl context:
const canvas = DOM.canvas(500, 500);
const gl = canvas.getContext('webgl2', { premultipliedAlpha: false });
const gpu = new GPU({
canvas,
context: gl
});
const krender = gpu.createKernel(function(x) {
this.color(this.thread.x / 500, this.thread.y / 500, x[0], x[1]);
})
.setOutput([500, 500])
.setGraphical(true);
Sometimes you want to do multiple math operations on the gpu without the round trip penalty of data transfer from cpu to gpu to cpu to gpu, etc. To aid this there is the combineKernels
method.
Note: Kernels can have different output sizes.
const add = gpu.createKernel(function(a, b) {
return a + b;
}).setOutput([20]);
const multiply = gpu.createKernel(function(a, b) {
return a * b;
}).setOutput([20]);
const superKernel = gpu.combineKernels(add, multiply, function(a, b, c) {
return multiply(add(a[this.thread.x], b[this.thread.x]), c[this.thread.x]);
});
superKernel(a, b, c);
This gives you the flexibility of using multiple transformations but without the performance penalty, resulting in a much much MUCH faster operation.
Sometimes you want to do multiple math operations in one kernel, and save the output of each of those operations. An example is Machine Learning where the previous output is required for back propagation. To aid this there is the createKernelMap
method.
const megaKernel = gpu.createKernelMap({
addResult: function add(a, b) {
return a + b;
},
multiplyResult: function multiply(a, b) {
return a * b;
},
}, function(a, b, c) {
return multiply(add(a[this.thread.x], b[this.thread.x]), c[this.thread.x]);
});
megaKernel(a, b, c);
// Result: { addResult: Float32Array, multiplyResult: Float32Array, result: Float32Array }
const megaKernel = gpu.createKernelMap([
function add(a, b) {
return a + b;
},
function multiply(a, b) {
return a * b;
}
], function(a, b, c) {
return multiply(add(a[this.thread.x], b[this.thread.x]), c[this.thread.x]);
});
megaKernel(a, b, c);
// Result: { 0: Float32Array, 1: Float32Array, result: Float32Array }
This gives you the flexibility of using parts of a single transformation without the performance penalty, resulting in much much MUCH faster operation.
use gpu.addFunction(function() {}, settings)
for adding custom functions. Example:
gpu.addFunction(function mySuperFunction(a, b) {
return a - b;
});
function anotherFunction(value) {
return value + 1;
}
gpu.addFunction(anotherFunction);
const kernel = gpu.createKernel(function(a, b) {
return anotherFunction(mySuperFunction(a[this.thread.x], b[this.thread.x]));
}).setOutput([20]);
To strongly type a function you may use settings. Settings take an optional hash values:
returnType
: optional, defaults to inference from FunctionNode
, the value you'd like to return from the function. By setting this value, it makes the build step of the kernel less resource intensive.
argumentTypes
: optional, defaults to inference from FunctionNode
for each param, a hash of param names with values of the return types. By setting this value, it makes the build step of the kernel less resource intensive.
Types: that may be used for returnType
or for each property of argumentTypes
:
- 'Array'
- 'Array(2)'
- 'Array(3)'
- 'Array(4)'
- 'HTMLImage'
- 'HTMLImageArray'
- 'Number'
- 'Float'
- 'Integer'
- 'NumberTexture'
- 'ArrayTexture(1)'
- 'ArrayTexture(2)'
- 'ArrayTexture(3)'
- 'ArrayTexture(4)'
Example:
gpu.addFunction(function mySuperFunction(a, b) {
return [a - b[1], b[0] - a];
}, { argumentTypes: { a: 'Number', b: 'Array(2)'}, returnType: 'Array(2)' });
function mySuperFunction(a, b) {
return a - b;
}
const kernel = gpu.createKernel(function(a, b) {
return mySuperFunction(a[this.thread.x], b[this.thread.x]);
})
.setOutput([20])
.setFunctions([mySuperFunction]);
- Any loops defined inside the kernel must have a maximum iteration count defined by the loopMaxIterations setting.
- Other than defining the iterations by a constant or fixed value as shown Dynamic sized via constants, you can also simply pass the number of iterations as a variable to the kernel
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < this.constants.size; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}, {
constants: { size: 512 },
output: [512, 512],
});
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
Pipeline is a feature where values are sent directly from kernel to kernel via a texture.
This results in extremely fast computing. This is achieved with the kernel setting pipeline: boolean
or by calling kernel.setPipeline(true)
const kernel1 = gpu.createKernel(function(v) {
return v[this.thread.x];
})
.setPipeline(true)
.setOutput([100]);
const kernel2 = gpu.createKernel(function(v) {
return v[this.thread.x];
})
.setOutput([100]);
const result1 = kernel1(array);
// Result: Texture
console.log(result1.toArray());
// Result: Float32Array[0, 1, 2, 3, ... 99]
const result2 = kernel2(result1);
// Result: Float32Array[0, 1, 2, 3, ... 99]
GPU.js supports offscreen canvas where available. Here is an example of how to use it with two files, gpu-worker.js
, and index.js
:
file: gpu-worker.js
importScripts('path/to/gpu.js');
onmessage = function() {
// define gpu instance
const gpu = new GPU();
// input values
const a = [1,2,3];
const b = [3,2,1];
// setup kernel
const kernel = gpu.createKernel(function(a, b) {
return a[this.thread.x] - b[this.thread.x];
})
.setOutput([3]);
// output some results!
postMessage(kernel(a, b));
};
file: index.js
var worker = new Worker('gpu-worker.js');
worker.onmessage = function(e) {
var result = e.data;
console.log(result);
};
- for instances of
GPU
use thedestroy
method. Example:gpu.destroy()
- for instances of
Kernel
use thedestroy
method. Example:kernel.destroy()
To use the useful x
, y
, z
thread
lookup api inside of GPU.js, and yet use flattened arrays, there is the Input
type.
This is generally much faster for when sending values to the gpu, especially with larger data sets. Usage example:
const { GPU, input, Input } = require('gpu.js');
const gpu = new GPU();
const kernel = gpu.createKernel(function(a, b) {
return a[this.thread.y][this.thread.x] + b[this.thread.y][this.thread.x];
}).setOutput([3,3]);
kernel(
input(
new Float32Array([1,2,3,4,5,6,7,8,9]),
[3, 3]
),
input(
new Float32Array([1,2,3,4,5,6,7,8,9]),
[3, 3]
)
);
Note: input(value, size)
is a simple pointer for new Input(value, size)
Since the code running in the kernel is actually compiled to GLSL code, not all functions from the JavaScript Math module are supported.
This is a list of the supported ones:
Math.abs()
Math.acos()
Math.asin()
Math.atan()
Math.atan2()
Math.ceil()
Math.cos()
Math.exp()
Math.floor()
Math.log()
Math.log2()
Math.max()
Math.min()
Math.pow()
Math.random()
- A note on random. We use a plugin to generate random. Random seeded and generated, both from the GPU, is not as good as random from the CPU as there are more things that the CPU can seed random from. However, we seed random on the GPU, from a random value in the CPU. We then seed the subsequent randoms from the previous random value. So we seed from CPU, and generate from GPU. Which is still not as good as CPU, but closer. While this isn't perfect, it should suffice in most scenarios.
Math.round()
Math.sign()
Math.sin()
Math.sqrt()
Math.tan()
Typescript is supported! Typings can be found here!
You can find a complete API reference here.
Documentation of the codebase is automatically built.
- Kernel - A function that is tightly coupled to program that runs on the Graphic Processor
- Texture - A graphical artifact that is packed with data, in the case of GPU.js, bit shifted parts of a 32 bit floating point decimal
GPU.js uses HeadlessGL in node for GPU acceleration. GPU.js is written in such a way, you can introduce your own backend. Have a suggestion? We'd love to hear it!
Contributors are welcome! Create a merge request to the develop
branch and we
will gladly review it. If you wish to get write access to the repository,
please email us and we will review your application and grant you access to
the develop
branch.
We promise never to pass off your code as ours.
If you have an issue, either a bug or a feature you think would benefit your project let us know and we will do our best.
Create issues here and follow the template.
This project exists thanks to all the people who contribute. [Contribute].
Thank you to all our backers! 🙏 [Become a backer]
Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [Become a sponsor]