8000 GitHub - DingjieFu/ZeroMamba: [AAAI'25] ZeroMamba: Exploring Visual State Space Model for Zero-Shot Learning
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

DingjieFu/ZeroMamba

Repository files navigation

ZeroMamba [AAAI'25]🎉

ZeroMamba: Exploring Visual State Space Model for Zero-Shot Learning

News

  • Dec. 10th, 2024: This repository contains the training and testing code for the AAAI'25 paper titled with "ZeroMamba: Exploring Visual State Space Model for Zero-Shot Learning" (arXiv). We will release the entire codes in the following days.

Overview

Framework

Main Results

Results of our released models using various evaluation protocols on three datasets, both in the CZSL and GZSL settings.

Dataset Acc(CZSL) U(GZSL) S(GZSL) H(GZSL)
CUB 80.0 72.1 76.4 74.2
SUN 72.4 56.5 41.4 47.7
AWA2 71.9 67.9 87.6 76.5

Environments setup

Note: We highly recommend that you adhere to the following steps.

  • Python & PyTorch

    conda create -n zeromamba python=3.10.13
    conda activate zeromamba
    conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=11.8 -c 
    99D7
    pytorch -c nvidia
  • Mamba dependencies

  • Vision Mamba dependencies

    • cp -r ZeroMamba/VisionMambaModels/Vim/mamba_ssm <your env's site-packages path>
    • cd ZeroMamba/VisionMambaModels/VMamba/kernels/selective_scan && pip install .
  • Other dependencies

git clone git@github.com:DingjieFu/ZeroMamba.git
cd ZeroMamba
pip install -r requirements.txt

Datasets Preparation

The structure:

ZeroMamba/
├── data
│   ├── attribute
│   ├── dataset
│   │   ├── AWA2
│   │   │   ├── Animals_with_Attributes2
│   │   │   └── ...
│   │   ├── CUB
│   │   │   ├── CUB_200_2011
│   │   │   └── ...
│   │   ├── SUN
│   │   │   ├── images
│   │   │   └── ...
│   │   ├── xlsa
│   │   └── ...
│   ├── w2v
│   └── ...
├── utils
└── ...

Training

Running following commands in ./scripts/train.sh, download the pre-trained model here and place it under ./checkpoints.

# AWA2
python train.py --model_name VMamba-S --model vmambav2_small_224\
    --ckpt vssm_small_0229_ckpt_epoch_222.pth --cfg  vmambav2_small_224.yaml\
    --dataset AWA2 --gamma 0.98 --input_size 448 --batch_size 32\
    --backbone_lr 1e-3 --head_lr 1e-3 --head2_lr 1e-4 --loss_L1 0.0
# CUB
python train.py --model_name VMamba-S --model vmambav2_small_224\
    --ckpt vssm_small_0229_ckpt_epoch_222.pth --cfg  vmambav2_small_224.yaml\
    --dataset CUB --gamma 0.3 --input_size 448 --batch_size 32\
    --backbone_lr 1e-3 --head_lr 1e-3 --head2_lr 1e-4 --loss_L1 1.0
# SUN
python train.py --model_name VMamba-S --model vmambav2_small_224\
    --ckpt vssm_small_0229_ckpt_epoch_222.pth --cfg  vmambav2_small_224.yaml\
    --dataset SUN --gamma 0.35 --input_size 448 --batch_size 32\
    --backbone_lr 1e-3 --head_lr 1e-3 --head2_lr 1e-4 --loss_L1 0.2

Testing

Preparing Model

We provide trained models(Google Drive)on three different datasets: CUB, SUN, AWA2 in the CZSL and GZSL settings. Download and place them under ./checkpoints

Testing Script

Running following commands in ./scripts/test.sh

# AWA2
python test.py --dataset AWA2 --gamma 0.98
# CUB
python test.py --dataset CUB --gamma 0.3
# SUN
python test.py --dataset SUN --gamma 0.35

Acknowledgement

This project is partly based on VMamba (github). Thanks for their wonderful works.

Citation

If you find ZeroMamba is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@inproceedings{hou2025zeromamba,
  title={ZeroMamba: Exploring Visual State Space Model for Zero-Shot Learning},
  author={Hou, Wenjin and Fu, Dingjie and Li, Kun and Chen, Shiming and Fan, Hehe and Yang, Yi},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={39},
  number={4},
  pages={3527--3535},
  year={2025}
}

About

[AAAI'25] ZeroMamba: Exploring Visual State Space Model for Zero-Shot Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
0