8000 Update numpy to 2.3.1 by pyup-bot · Pull Request #7856 · Dallinger/Dallinger · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Update numpy to 2.3.1 #7856

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open

Conversation

pyup-bot
Copy link
Collaborator

This PR updates numpy from 2.2.6 to 2.3.1.

Changelog

2.3.1

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

-   Fix bug in `matmul` for non-contiguous out kwarg parameter
-   Fix for Accelerate runtime warnings on M4 hardware
-   Fix new in NumPy 2.3.0 `np.vectorize` casting errors
-   Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Brad Smith +
-   Charles Harris
-   Developer-Ecosystem-Engineering
-   François Rozet
-   Joren Hammudoglu
-   Matti Picus
-   Mugundan Selvanayagam
-   Nathan Goldbaum
-   Sebastian Berg

Pull requests merged

A total of 12 pull requests were merged for this release.

-   [29140](https://github.com/numpy/numpy/pull/29140): MAINT: Prepare 2.3.x for further development
-   [29191](https://github.com/numpy/numpy/pull/29191): BUG: fix matmul with transposed out arg (#29179)
-   [29192](https://github.com/numpy/numpy/pull/29192): TYP: Backport typing fixes and improvements.
-   [29205](https://github.com/numpy/numpy/pull/29205): BUG: Revert `np.vectorize` casting to legacy behavior (#29196)
-   [29222](https://github.com/numpy/numpy/pull/29222): TYP: Backport typing fixes
-   [29233](https://github.com/numpy/numpy/pull/29233): BUG: avoid negating unsigned integers in resize implementation\...
-   [29234](https://github.com/numpy/numpy/pull/29234): TST: Fix test that uses uninitialized memory (#29232)
-   [29235](https://github.com/numpy/numpy/pull/29235): BUG: Address interaction between SME and FPSR (#29223)
-   [29237](https://github.com/numpy/numpy/pull/29237): BUG: Enforce integer limitation in concatenate (#29231)
-   [29238](https://github.com/numpy/numpy/pull/29238): CI: Add support for building NumPy with LLVM for Win-ARM64
-   [29241](https://github.com/numpy/numpy/pull/29241): ENH: Detect CPU features on OpenBSD ARM and PowerPC64
-   [29242](https://github.com/numpy/numpy/pull/29242): ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.

Checksums

MD5

 c353ac75ea083594a6cb674b5f943d83  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
 fdb5454e372d399cf570868ea7e2b192  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
 dc0f17823bb1826519d6974c2b95fa90  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
 7e3118fe383af697a8868ba191b9eac0  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
 705aafad1250aa3e41502c5710a26ed5  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
 003d6268344577b804205098e11cdaa0  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
 7d0c0fd11c573c510a25dd7513e4ae0a  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
 d99f993ef05966ead99df736df18b521  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
 96933cac225fb8b60a9cc2c0efa14d36  numpy-2.3.1-cp311-cp311-win32.whl
 f777712419f3dd586ac294ddce84b274  numpy-2.3.1-cp311-cp311-win_amd64.whl
 1fe2615669de5c271a48b99356fa3528  numpy-2.3.1-cp311-cp311-win_arm64.whl
 fccca48846d41d38966cc75395787f79  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
 fa389e78db43f3c2841ce127c1205422  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
 2554944d786abd284db4a699d4edfe1e  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
 7fec491834803a8ffa3765ef3d03cea5  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
 7c2d8b4412f12b9b02e98349fb5cd760  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
 94dcc636a2f2478666d820e21fc91682  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
 404128939d89d1ea26be105fb03b5028  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
 e89d8d460060e8315c3ba68b2b649db0  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
 a767bd10267ad6baef9655fb08db3fd3  numpy-2.3.1-cp312-cp312-win32.whl
 f753b957fcb7f06f043cf9c6114f294c  numpy-2.3.1-cp312-cp312-win_amd64.whl
 58ffa7c69587f9bf8f6025794fec7f63  numpy-2.3.1-cp312-cp312-win_arm64.whl
 22a2a9a568dd0866b288ad8bd8bb3e90  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
 5e1593fcc8bb3447e995622f2dca017b  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
 894d56072db9358e0096538710a1a8ce  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
 593cb311f5170cbcfcefb587cdcc70bb  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
 22935447e75acda4075c57b332c0236a  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
 5aa2040f947204e15e95ec87461a7e91  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
 6516337f0347974fada21a23a818be64  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
 ec956eb37b874b1ec52d6ffccda6ef65  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
 0aaed62cb1bae9c1b1a44d1a4eda2db7  numpy-2.3.1-cp313-cp313-win32.whl
 57829996fc12f649547f0258443bbb20  numpy-2.3.1-cp313-cp313-win_amd64.whl
 a0d0dd68bbf0ab378142b2daff0a8e06  numpy-2.3.1-cp313-cp313-win_arm64.whl
 b22dc66970a8017e4d0ce83ef8c938af  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
 93c17afb38cf8fd876ca2bd9ea7e9612  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
 283064dabb434f3dbc1a5e2514b9cb29  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
 5b8c778033c98b4a0ce6e5bfc7625f05  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
 2340bd78962f194bcdbee6531d954acc  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
 43a92ad37dc68d719bdeeeb65b3f4d2f  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
 eb110c4aa0d73558187397ddfba179ad  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
 1f7f0076411ed4afa9c4553eb06564cb  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
 30f30dde6f806070b2164e48a632a350  numpy-2.3.1-cp313-cp313t-win32.whl
 2375e2f2a5b75c5f5c908af6bb85d639  numpy-2.3.1-cp313-cp313t-win_amd64.whl
 b421530a87bb8e9e3d4dc34c75d5d953  numpy-2.3.1-cp313-cp313t-win_arm64.whl
 b1bc3cbf9cd407964b2bb25dfe86ca3d  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
 4c2e234eb4f346f362d6e6c620fa7a56  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
 98ec3c19a365d0ae926113bb349e323b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
 e0c7bcd526cde46489d5a8f12e06cc77  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
 41f535aa1f1acaf3d8a32a462a4cd4c8  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
 2abf906a6688c98693045cbbc655d5b7  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
 886559a4c541298b37245e389ce8bf10  numpy-2.3.1.tar.gz

SHA256

 6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
 5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
 0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
 e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
 467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
 afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
 0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
 a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
 a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369  numpy-2.3.1-cp311-cp311-win32.whl
 d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff  numpy-2.3.1-cp311-cp311-win_amd64.whl
 ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a  numpy-2.3.1-cp311-cp311-win_arm64.whl
 2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
 762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
 867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
 4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
 8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
 e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
 5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
 ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
 e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab  numpy-2.3.1-cp312-cp312-win32.whl
 cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76  numpy-2.3.1-cp312-cp312-win_amd64.whl
 7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30  numpy-2.3.1-cp312-cp312-win_arm64.whl
 25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
 7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
 bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
 a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
 18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
 5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
 36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
 a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
 39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8  numpy-2.3.1-cp313-cp313-win32.whl
 8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42  numpy-2.3.1-cp313-cp313-win_amd64.whl
 0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e  numpy-2.3.1-cp313-cp313-win_arm64.whl
 b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
 c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
 d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
 2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
 23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
 ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
 c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
 010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
 6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e  numpy-2.3.1-cp313-cp313t-win32.whl
 2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc  numpy-2.3.1-cp313-cp313t-win_amd64.whl
 eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244  numpy-2.3.1-cp313-cp313t-win_arm64.whl
 ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
 ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
 15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
 c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
 eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
 e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
 1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b  numpy-2.3.1.tar.gz

2.3.0

The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations and the number of
code modernizations and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.

There are known test failures in the rc1 release involving MyPy and
PyPy. The cause of both has been determined and fixes will be applied
before the final release. The current Windows on ARM wheels also lack
OpenBLAS, but they should suffice for initial downstream testing.
OpenBLAS will be incorporated in those wheels when it becomes available.

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Highlights

-   Interactive examples in the NumPy documentation.
-   Building NumPy with OpenMP Parallelization.
-   Preliminary support for Windows on ARM.
-   Improved support for free threaded Python.
-   Improved annotations.

New functions

New function `numpy.strings.slice`

The new function `numpy.strings.slice` was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.

([gh-27789](https://github.com/numpy/numpy/pull/27789))

Deprecations

-   The `numpy.typing.mypy_plugin` has been deprecated in favor of
 platform-agnostic static type inference. Please remove
 `numpy.typing.mypy_plugin` from the `plugins` section of your mypy
 configuration. If this change results in new errors being reported,
 kindly open an issue.

 ([gh-28129](https://github.com/numpy/numpy/pull/28129))

-   The `numpy.typing.NBitBase` type has been deprecated and will be
 removed in a future version.

 This type was previously intended to be used as a generic upper
 bound for type-parameters, for example:

  python
 import numpy as np
 import numpy.typing as npt

 def f[NT: npt.NBitBase](x: np.complexfloating[NT]) -> np.floating[NT]: ...
 

 But in NumPy 2.2.0, `float64` and `complex128` were changed to
 concrete subtypes, causing static type-checkers to reject
 `x: np.float64 = f(np.complex128(42j))`.

 So instead, the better approach is to use `typing.overload`:

  python
 import numpy as np
 from typing import overload

 overload
 def f(x: np.complex64) -> np.float32: ...
 overload
 def f(x: np.complex128) -> np.float64: ...
 overload
 def f(x: np.clongdouble) -> np.longdouble: ...
 

 ([gh-28884](https://github.com/numpy/numpy/pull/28884))

Expired deprecations

-   Remove deprecated macros like `NPY_OWNDATA` from Cython interfaces
 in favor of `NPY_ARRAY_OWNDATA` (deprecated since 1.7)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Remove `numpy/npy_1_7_deprecated_api.h` and C macros like
 `NPY_OWNDATA` in favor of `NPY_ARRAY_OWNDATA` (deprecated since 1.7)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Remove alias `generate_divbyzero_error` to
 `npy_set_floatstatus_divbyzero` and `generate_overflow_error` to
 `npy_set_floatstatus_overflow` (deprecated since 1.10)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Remove `np.tostring` (deprecated since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Raise on `np.conjugate` of non-numeric types (deprecated since 1.13)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Raise when using `np.bincount(...minlength=None)`, use 0 instead
 (deprecated since 1.14)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Passing `shape=None` to functions with a non-optional shape argument
 errors, use `()` instead (deprecated since 1.20)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Inexact matches for `mode` and `searchside` raise (deprecated since
 1.20)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Setting `__array_finalize__ = None` errors (deprecated since 1.23)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   `np.fromfile` and `np.fromstring` error on bad data, previously they
 would guess (deprecated since 1.18)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   `datetime64` and `timedelta64` construction with a tuple no longer
 accepts an `event` value, either use a two-tuple of (unit, num) or a
 4-tuple of (unit, num, den, 1) (deprecated since 1.14)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   When constructing a `dtype` from a class with a `dtype` attribute,
 that attribute must be a dtype-instance rather than a thing that can
 be parsed as a dtype instance (deprecated in 1.19). At some point
 the whole construct of using a dtype attribute will be deprecated
 (see 25306)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Passing booleans as partition index errors (deprecated since 1.23)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Out-of-bounds indexes error even on empty arrays (deprecated since
 1.20)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   `np.tostring` has been removed, use `tobytes` instead (deprecated
 since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Disallow make a non-writeable array writeable for arrays with a base
 that do not own their data (deprecated since 1.17)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   `concatenate()` with `axis=None` uses `same-kind` casting by
 default, not `unsafe` (deprecated since 1.20)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Unpickling a scalar with object dtype errors (deprecated since 1.20)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   The binary mode of `fromstring` now errors, use `frombuffer` instead
 (deprecated since 1.14)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Converting `np.inexact` or `np.floating` to a dtype errors
 (deprecated since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Converting `np.complex`, `np.integer`, `np.signedinteger`,
 `np.unsignedinteger`, `np.generic` to a dtype errors (deprecated
 since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   The Python built-in `round` errors for complex scalars. Use
 `np.round` or `scalar.round` instead (deprecated since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   \'np.bool\' scalars can no longer be interpreted as an index
 (deprecated since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Parsing an integer via a float string is no longer supported.
 (deprecated since 1.23) To avoid this error you can

 -   make sure the original data is stored as integers.
 -   use the `converters=float` keyword argument.
 -   Use `np.loadtxt(...).astype(np.int64)`

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   The use of a length 1 tuple for the ufunc `signature` errors. Use
 `dtype` or fill the tuple with `None` (deprecated since 1.19)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Special handling of matrix is in np.outer is removed. Convert to a
 ndarray via `matrix.A` (deprecated since 1.20)

 ([gh-28254](https://github.com/numpy/numpy/pull/28254))

-   Removed the `np.compat` package source code (removed in 2.0)

 ([gh-28961](https://github.com/numpy/numpy/pull/28961))

C API changes

-   `NpyIter_GetTransferFlags` is now available to check if the iterator
 needs the Python API or if casts may cause floating point errors
 (FPE). FPEs can for example be set when casting `float64(1e300)` to
 `float32` (overflow to infinity) or a NaN to an integer (invalid
 value).

 ([gh-27883](https://github.com/numpy/numpy/pull/27883))

-   `NpyIter` now has no limit on the number of operands it supports.

 ([gh-28080](https://github.com/numpy/numpy/pull/28080))

New `NpyIter_GetTransferFlags` and `NpyIter_IterationNeedsAPI` change

NumPy now has the new `NpyIter_GetTransferFlags` function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.

The `NpyIter_IterationNeedsAPI` function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.

([gh-27998](https://github.com/numpy/numpy/pull/27998))

New Features

-   The type parameter of `np.dtype` now defaults to `typing.Any`. This
 way, static type-checkers will infer `dtype: np.dtype` as
 `dtype: np.dtype[Any]`, without reporting an error.

 ([gh-28669](https://github.com/numpy/numpy/pull/28669))

-   Static type-checkers now interpret:

 -   `_: np.ndarray` as `_: npt.NDArray[typing.Any]`.
 -   `_: np.flatiter` as `_: np.flatiter[np.ndarray]`.

 This is because their type parameters now have default values.

 ([gh-28940](https://github.com/numpy/numpy/pull/28940))

NumPy now registers its pkg-config paths with the [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) PyPI package

The [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when using [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi)
from PyPI, NumPy will be discoverable without needing for any custom
environment configuration.

> [!NOTE]
>This only applies when using the [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) package from [PyPI](https://pypi.org/),
or put another way, this only applies when installing [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) via a
Python package manager.
>
>If you are using `pkg-config` or `pkgconf` provided by your system,
or any other source that does not use the [pkgconf-pypi](https://github.com/pypackaging-native/pkgconf-pypi)
project, the NumPy pkg-config directory will not be automatically added
to the search path. In these situations, you might want to use `numpy-config`.

([gh-28214](https://github.com/numpy/numpy/pull/28214))

Allow `out=...` in ufuncs to ensure array result

NumPy has the sometimes difficult behavior that it currently usually
returns scalars rather than 0-D arrays (even if the inputs were 0-D
arrays). This is especially problematic for non-numerical dtypes (e.g.
`object`).

For ufuncs (i.e. most simple math functions) it is now possible to use
`out=...` (literally \`\...\`, e.g. `out=Ellipsis`) which is identical
in behavior to `out` not being passed, but will ensure a non-scalar
return. This spelling is borrowed from `arr1d[0, ...]` where the `...`
also ensures a non-scalar return.

Other functions with an `out=` kwarg should gain support eventually.
Downstream libraries that interoperate via `__array_ufunc__` or
`__array_function__` may need to adapt to support this.

([gh-28576](https://github.com/numpy/numpy/pull/28576))

Building NumPy with OpenMP Parallelization

NumPy now supports OpenMP parallel processing capabilities when built
with the `-Denable_openmp=true` Meson build flag. This feature is
disabled by default. When enabled, `np.sort` and `np.argsort` functions
can utilize OpenMP for parallel thread execution, improving performance
for these operations.

([gh-28619](https://github.com/numpy/numpy/pull/28619))

Interactive examples in the NumPy documentation

The NumPy documentation includes a number of examples that can now be
run interactively in your browser using WebAssembly and Pyodide.

Please note that the examples are currently experimental in nature and
may not work as expected for all methods in the public API.

([gh-26745](https://github.com/numpy/numpy/pull/26745))

Improvements

-   Scalar comparisons between non-comparable dtypes such as
 `np.array(1) == np.array('s')` now return a NumPy bool instead 
8000
of a
 Python bool.

 ([gh-27288](https://github.com/numpy/numpy/pull/27288))

-   `np.nditer` now has no limit on the number of supported operands
 (C-integer).

 ([gh-28080](https://github.com/numpy/numpy/pull/28080))

-   No-copy pickling is now supported for any array that can be
 transposed to a C-contiguous array.

 ([gh-28105](https://github.com/numpy/numpy/pull/28105))

-   The `__repr__` for user-defined dtypes now prefers the `__name__` of
 the custom dtype over a more generic name constructed from its
 `kind` and `itemsize`.

 ([gh-28250](https://github.com/numpy/numpy/pull/28250))

-   `np.dot` now reports floating point exceptions.

 ([gh-28442](https://github.com/numpy/numpy/pull/28442))

-   `np.dtypes.StringDType` is now a [generic
 type](https://typing.python.org/en/latest/spec/generics.html) which
 accepts a type argument for `na_object` that defaults to
 `typing.Never`. For example, `StringDType(na_object=None)` returns a
 `StringDType[None]`, and `StringDType()` returns a
 `StringDType[typing.Never]`.

 ([gh-28856](https://github.com/numpy/numpy/pull/28856))

Added warnings to `np.isclose`

Added warning messages if at least one of atol or rtol are either
`np.nan` or `np.inf` within `np.isclose`.

-   Warnings follow the user\'s `np.seterr` settings

([gh-28205](https://github.com/numpy/numpy/pull/28205))

Performance improvements and changes

Performance improvements to `np.unique`

`np.unique` now tries to use a hash table to find unique values instead
of sorting values before finding unique values. This is limited to
certain dtypes for now, and the function is now faster for those dtypes.
The function now also exposes a `sorted` parameter to allow returning
unique values as they were found, instead of sorting them afterwards.

([gh-26018](https://github.com/numpy/numpy/pull/26018))

Performance improvements to `np.sort` and `np.argsort`

`np.sort` and `np.argsort` functions now can leverage OpenMP for
parallel thread execution, resulting in up to 3.5x speedups on x86
architectures with AVX2 or AVX-512 instructions. This opt-in feature
requires NumPy to be built with the -Denable_openmp Meson flag. Users
can control the number of threads used by setting the OMP_NUM_THREADS
environment variable.

([gh-28619](https://github.com/numpy/numpy/pull/28619))

Performance improvements for `np.float16` casts

Earlier, floating point casts to and from `np.float16` types were
emulated in software on all platforms.

Now, on ARM devices that support Neon float16 intrinsics (such as recent
Apple Silicon), the native float16 path is used to achieve the best
performance.

([gh-28769](https://github.com/numpy/numpy/pull/28769))

Changes

-   The vector norm `ord=inf` and the matrix norms
 `ord={1, 2, inf, 'nuc'}` now always returns zero for empty arrays.
 Empty arrays have at least one axis of size zero. This affects
 `np.linalg.norm`, `np.linalg.vector_norm`, and
 `np.linalg.matrix_norm`. Previously, NumPy would raises errors or
 return zero depending on the shape of the array.

 ([gh-28343](https://github.com/numpy/numpy/pull/28343))

-   A spelling error in the error message returned when converting a
 string to a float with the method `np.format_float_positional` has
 been fixed.

 ([gh-28569](https://github.com/numpy/numpy/pull/28569))

-   NumPy\'s `__array_api_version__` was upgraded from `2023.12` to
 `2024.12`.

-   `numpy.count_nonzero` for `axis=None` (default) now returns a NumPy
 scalar instead of a Python integer.

-   The parameter `axis` in `numpy.take_along_axis` function has now a
 default value of `-1`.

 ([gh-28615](https://github.com/numpy/numpy/pull/28615))

-   Printing of `np.float16` and `np.float32` scalars and arrays have
 been improved by adjusting the transition to scientific notation
 based on the floating point precision. A new legacy
 `np.printoptions` mode `'2.2'` has been added for backwards
 compatibility.

 ([gh-28703](https://github.com/numpy/numpy/pull/28703))

`unique_values` may return unsorted data

The relatively new function (added in NumPy 2.0) `unique_values` may now
return unsorted results. Just as `unique_counts` and `unique_all` these
never guaranteed a sorted result, however, the result was sorted until
now. In cases where these do return a sorted result, this may change in
future releases to improve performance.

([gh-26018](https://github.com/numpy/numpy/pull/26018))

Changes to the main iterator and potential numerical changes

The main iterator, used in math functions and via `np.nditer` from
Python and `NpyIter` in C, now behaves differently for some buffered
iterations. This means that:

-   The buffer size used will often be smaller than the maximum buffer
 sized allowed by the `buffersize` parameter.
-   The \"growinner\" flag is now honored with buffered reductions when
 no operand requires buffering.

For `np.sum()` such changes in buffersize may slightly change numerical
results of floating point operations. Users who use \"growinner\" for
custom reductions could notice changes in precision (for example, in
NumPy we removed it from `einsum` to avoid most precision changes and
improve precision for some 64bit floating point inputs).

([gh-27883](https://github.com/numpy/numpy/pull/27883))

The minimum supported GCC version is now 9.3.0

The minimum supported version was updated from 8.4.0 to 9.3.0, primarily
in order to reduce the chance of platform-specific bugs in old GCC
versions from causing issues.

([gh-28102](https://github.com/numpy/numpy/pull/28102))

Changes to automatic bin selection in numpy.histogram

The automatic bin selection algorithm in `numpy.histogram` has been
modified to avoid out-of-memory errors for samples with low variation.
For full control over the selected bins the user can use set the `bin`
or `range` parameters of `numpy.histogram`.

([gh-28426](https://github.com/numpy/numpy/pull/28426))

Build manylinux_2_28 wheels

Wheels for linux systems will use the `manylinux_2_28` tag (instead of
the `manylinux2014` tag), which means dropping support for
redhat7/centos7, amazonlinux2, debian9, ubuntu18.04, and other
pre-glibc2.28 operating system versions, as per the [PEP 600 support
table](https://github.com/mayeut/pep600_compliance?tab=readme-ov-file#pep600-compliance-check).

([gh-28436](https://github.com/numpy/numpy/pull/28436))

Remove use of -Wl,-ld_classic on macOS

Remove use of -Wl,-ld_classic on macOS. This hack is no longer needed by
Spack, and results in libraries that cannot link to other libraries
built with ld (new).

([gh-28713](https://github.com/numpy/numpy/pull/28713))

Re-enable overriding functions in the `numpy.strings`

Re-enable overriding functions in the `numpy.strings` module.

([gh-28741](https://github.com/numpy/numpy/pull/28741))

Checksums

MD5

 629f59f0a128a7ff1f3fedac6e2c42da  numpy-2.3.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
 6b69c1f05cb782104bb4063f79bfb804  numpy-2.3.0rc1-cp311-cp311-macosx_11_0_arm64.whl
 0a5c651274fcd4912490edf17052302b  numpy-2.3.0rc1-cp311-cp311-macosx_14_0_arm64.whl
 aac595e422ddf5ab5d87cdce3be66262  numpy-2.3.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
 f7d4f749f9e85a50adfbafd1b9c70fe8  numpy-2.3.0rc1-cp311-cp311-manylinux_2_28_aarch64.whl
 ec8a0e794ce8fc7e35f90d83b68cd2d6  numpy-2.3.0rc1-cp311-cp311-manylinux_2_28_x86_64.whl
 a8800a3c3fc260b02a36fb9dc8a1a399  numpy-2.3.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
 8e96ee3eb6e07e8efdff7754b9d008b6  numpy-2.3.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
 4157e803760012f28317495eec5b3310  numpy-2.3.0rc1-cp311-cp311-win32.whl
 1afc4f1a7adb81d9f2705a4c10f2d808  numpy-2.3.0rc1-cp311-cp311-win_amd64.whl
 11251ad640d2dd50b2d0a08a1c79e870  numpy-2.3.0rc1-cp311-cp311-win_arm64.whl
 f723f2e6b1ed4430b5a5c0c05501b55c  numpy-2.3.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
 6ca0c0e1c2819a04b6c01559ce2d60dd  numpy-2.3.0rc1-cp312-cp312-macosx_11_0_arm64.whl
 56af103256eac1edcc34382a9c45a5eb  numpy-2.3.0rc1-cp312-cp312-macosx_14_0_arm64.whl
 e3acbafb6da1e75c80361e4f3c791d12  numpy-2.3.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
 278c4727d8b8d05b6202355cf740cfd4  numpy-2.3.0rc1-cp312-cp312-manylinux_2_28_aarch64.whl
 3cd5e204141a450301fdcbda83e044f5  numpy-2.3.0rc1-cp312-cp312-manylinux_2_28_x86_64.whl
 c4369a338a9900fc43c6fe46e5113505  numpy-2.3.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
 12c5af8ba96f61d1a5d41f15c1d55721  numpy-2.3.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
 81fae7bcfc52b810c75a3c14bc182f12  numpy-2.3.0rc1-cp312-cp312-win32.whl
 1ce23327d02c79b64c16f54d412e32ae  numpy-2.3.0rc1-cp312-cp312-win_amd64.whl
 9e538dfe7f2051f63422d4e1edcd23bd  numpy-2.3.0rc1-cp312-cp312-win_arm64.whl
 ca94a64c4ad19bad2fd5baba19bc8578  numpy-2.3.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
 d964ed57e7b28365a75210e83c396ea5  numpy-2.3.0rc1-cp313-cp313-macosx_11_0_arm64.whl
 03247ffd1c0a63e86382867df6914cd6  numpy-2.3.0rc1-cp313-cp313-macosx_14_0_arm64.whl
 65ace2a8b56475a356357091c704a257  numpy-2.3.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
 e3283698c1124b6e60b8361d4884792f  numpy-2.3.0rc1-cp313-cp313-manylinux_2_28_aarch64.whl
 afa8c55affdc96845ee0f904de86e1dc  numpy-2.3.0rc1-cp313-cp313-manylinux_2_28_x86_64.whl
 fc296e255a2afb62956642355d1830c2  numpy-2.3.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
 32fd94baff245adcd4e12531ec2812be  numpy-2.3.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
 8114fe3c90fb01856b089b076a3eaf69  numpy-2.3.0rc1-cp313-cp313-win32.whl
 3aae3297bd4d94fd628666da9224b871  numpy-2.3.0rc1-cp313-cp313-win_amd64.whl
 76387f5d0a213f13b1352efc5087ebe2  numpy-2.3.0rc1-cp313-cp313-win_arm64.whl
 cd6d0165be416093c2229319d9578e22  numpy-2.3.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
 783a19b5db79d0080727dcae4c48ce90  numpy-2.3.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
 af327355774245aebd2bc790982190b9  numpy-2.3.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
 fe643d848c382e0c97cb85ce993c7ac9  numpy-2.3.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
 d4facf10a4628a67f076e230caa8cd7b  numpy-2.3.0rc1-cp313-cp313t-manylinux_2_28_aarch64.whl
 a16b6003b0778caddb708d06a8720c2b  numpy-2.3.0rc1-cp313-cp313t-manylinux_2_28_x86_64.whl
 27732d00b9124f2866f45602d5c46ef5  numpy-2.3.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
 1c25ee631482975bbeb378d88608b3b5  numpy-2.3.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
 63974df1b36d9486a0a8a4953a53a418  numpy-2.3.0rc1-cp313-cp313t-win32.whl
 1e67187dd5fbc2663a0922e3434e4838  numpy-2.3.0rc1-cp313-cp313t-win_amd64.whl
 8ae83e7618c196dfe4e637c5f81692e5  numpy-2.3.0rc1-cp313-cp313t-win_arm64.whl
 a96f68abaa4aa674e49eec4add0b2c0b  numpy-2.3.0rc1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
 fe679f10ad4c9d3fce0db85c632967a7  numpy-2.3.0rc1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
 c9f14388eae0b01b5225e0f8f79ba9f6  numpy-2.3.0rc1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
 7cea15ab8d47bc2f3f6377c29a74138f  numpy-2.3.0rc1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
 46d07cd0f0aacce6d4b5ce949a333abc  numpy-2.3.0rc1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
 df12654557fe28806bed04e15d1fe1d7  numpy-2.3.0rc1-pp311-pypy311_pp73-win_amd64.whl
 5677afac6d3d39fe93a96cab654f38e7  numpy-2.3.0rc1.tar.gz

SHA256

 82b035e631187bee40c1d2c1593e40dcad62cfbaf833c5d3e179c1d7bce87e0c  numpy-2.3.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
 2f2f8a82005073929532ed8e09eda78544140996ef283d007945323d27e3ef84  numpy-2.3.0rc1-cp311-cp311-macosx_11_0_arm64.whl
 96af406cf156acb52edfa3b38c1fc8efe0f986bff5f99176657ba09606e78fe7  numpy-2.3.0rc1-cp311-cp311-macosx_14_0_arm64.whl
 30f11867a70c96e6628f9b5da5cb426efe4ebe5e1f02bc8932c79f4dfa0c1e02  numpy-2.3.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
 c54f93b5c0c210e580fd1d114b76b172190bdefcdee3eab865587d4c860067fa  numpy-2.3.0rc1-cp311-cp311-manylinux_2_28_aarch64.whl
 6d72740255bcbaa94a66329daffd974e8212eee4b77acc8c3da8dd179adbe7f3  numpy-2.3.0rc1-cp311-cp311-manylinux_2_28_x86_64.whl
 44f65efc7f4a62e0624f53cd241761b5a9cdaa302e50dd8f30adc1173e2c1691  numpy-2.3.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
 e9766d1d3b36df82777c7f0a6d248d21e7aceafd40d24b87f9cec6c5916a4908  numpy-2.3.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
 07638479fc90c38168a3dd29a54c750701100dd84622bbaa32783459d2df7c54  numpy-2.3.0rc1-cp311-cp311-win32.whl
 7cc39c12551a3b92f9db5dd0faff021043f4f432167f990424a3c9149314f3a3  numpy-2.3.0rc1-cp311-cp311-win_amd64.whl
 213b2aa630118690e684a2666c58978a45763fbd4034b9b990d827a25df7b6ae  numpy-2.3.0rc1-cp311-cp311-win_arm64.whl
 c9d04e6f6bf7fe48eb25af803de3e2ee5dbaba7786d17764d7bacc242d47d96e  numpy-2.3.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
 8cd953239b23dd0f5363553efb2eab4651c33b3772c7bcfe3bc0e1a84a9149e6  numpy-2.3.0rc1-cp312-cp312-macosx_11_0_arm64.whl
 66bff8b92964eb21593d787e55668d1800d5cfeb0ccf75691cce80c15b155839  numpy-2.3.0rc1-cp312-cp312-macosx_14_0_arm64.whl
 580ce0f8e9e340571a5b0c32b7f3e1489ea018dbc37b22913788be23e8a50559  numpy-2.3.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
 93909bcf08b4aa21a74a687342843eef5479c317add9700a66b0122cc1c9d604  numpy-2.3.0rc1-cp312-cp312-manylinux_2_28_aarch64.whl
 9efc27c9b25d4387e6153d01cc93a8ae18a6a37d6598cb4da3876874a3aa1283  numpy-2.3.0rc1-cp312-cp312-manylinux_2_28_x86_64.whl
 14e86a57107b03e7b31b4d677ded1af52079f05bde89008b4dfd5a3fd7767769  numpy-2.3.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
 c4ac94252a8dec06d6c55126f83775ec90b0d8ceaed9086d7166175455772155  numpy-2.3.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
 c8047609194df241d20b5d3534319df0f2ef57c7163a9e67ceb8a7ab3d3c7413  numpy-2.3.0rc1-cp312-cp312-win32.whl
 ea64b01b0b9ee53fd1c05dad508e1ee05ca888579687a94044cdea8ef47f8efc  numpy-2.3.0rc1-cp312-cp312-win_amd64.whl
 c0ca78c3c15db1b69b91027c6485291b2ffbdd29dab77bd5d044248569c9ff85  numpy-2.3.0rc1-cp312-cp312-win_arm64.whl
 77fc845f90f74b83881330bd3d15c112bdac5e2947e77adec2be141eb5a71aff  numpy-2.3.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
 fcaf7cfbe003ea5d6e2f470fbb67001dae39dbddc76a608b10623592f4711c78  numpy-2.3.0rc1-cp313-cp313-macosx_11_0_arm64.whl
 167c1b4ad39017d5b0bfae7c5b71ced40025ef26ff8b9fc65e39519533b7c416  numpy-2.3.0rc1-cp313-cp313-macosx_14_0_arm64.whl
 f4d15d5ad63ea6760b0ff49cc88a635b02838488ebabb41bc2524f67d9d5b74e  numpy-2.3.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
 eb5a7a5d1c28881b1c9536038d9ea224051464b0a033d8bd87ec75634e8ee2db  numpy-2.3.0rc1-cp313-cp313-manylinux_2_28_aarch64.whl
 022fa032a8dcabef0771db621a77a9203358e41cb651d8903836783e9708248f  numpy-2.3.0rc1-cp313-cp313-manylinux_2_28_x86_64.whl
 b6d9d7ad7666f646bbb831a80c668b61a08d4deb00935ef475a1c81ba0b87bdb  numpy-2.3.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
 172965a57a44ccfbfc67746c721128647a4df3aecec3d3b91c67e75c575548cc  numpy-2.3.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
 b056d511fdb33ee7076586fbb831be0a8030e9565f5ea0ceebe649f29e647ac0  numpy-2.3.0rc1-cp313-cp313-win32.whl
 f437b4af30ab36e7fa9fd7856b0482229259fc98aeb5e53a287eda5253e4f1ec  numpy-2.3.0rc1-cp313-cp313-win_amd64.whl
 ffbda03577e4f401f4465345ca98c9dc95e3a23df2ec16854f4aa37ae6c1fb56  numpy-2.3.0rc1-cp313-cp313-win_arm64.whl
 4de6304a0653a76f6418f4c0aa84048953d5891aa8296681d916f95b0a5eddf8  numpy-2.3.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
 17cb57f5c862904d57a1d1eb2d6e3f0e3a0d7ea738d5281638aef7c45b8c4525  numpy-2.3.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
 96d8e7e0666836202e9cff63cb16d9c49bd31222303f3b70dc9144c3ae191cdd  numpy-2.3.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
 e967c553e48c14feb3387248cf089c4f7f8ec66f6800cb184effa2da5494d9e8  numpy-2.3.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
 cb18f1e661c4480e7d40bac0172ab456aececa05aec5855d987d6a1f51d51206  numpy-2.3.0rc1-cp313-cp313t-manylinux_2_28_aarch64.whl
 eb0876192b685ed3f96049dbd5aa9a1d871b47c553b3d304692bbbe386fa7441  numpy-2.3.0rc1-cp313-cp313t-manylinux_2_28_x86_64.whl
 de2e8223ef8e65963976de817419314d7e791d403a9d6448174e3f490559ba8d  numpy-2.3.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
 b7c0007ae7dd02acaaf198cf1a6b4da805aaa3857a452403c3de1fed29ab158c  numpy-2.3.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
 875ee6c2865523adb78ebcfbcef186fc99201e9931a49132d97101f57f154ff1  numpy-2.3.0rc1-cp313-cp313t-win32.whl
 b59de7a3beeca46f189c53609db7794ccb83a90fa5841111d5ca77bbe990ed21  numpy-2.3.0rc1-cp313-cp313t-win_amd64.whl
 7f06a256ce74713eae26c19221b305783d4db5f8cad457e82f9a4f8cc55b9632  numpy-2.3.0rc1-cp313-cp313t-win_arm64.whl
 3c8681de7c4fc72f5ab29e5a8343b37fe7bdc465e8cc3c99637ac884e26e41fd  numpy-2.3.0rc1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
 ec2037b6d700b8491a97efcbfa05dec666d8ae7807f374beb9d3320531d42e9b  numpy-2.3.0rc1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
 ab6e2b743192e7e9ecef7d22a90c394a6fe3313676e55fcc1c566ee0649b35db  numpy-2.3.0rc1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
 fccea8370d46dcb20012a1e8e54bc70dc7e2db8bfc3e20b95f8f871bb408744f  numpy-2.3.0rc1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
 477064e29dfac734cb53269f5a4916e38e11ef9d42f6c475e9c695e25f78e868  numpy-2.3.0rc1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
 95c190db9870e0dc616da2f267a3fc29544a843601251947eadc0e00a0aa8ad6  numpy-2.3.0rc1-pp311-pypy311_pp73-win_amd64.whl
 a28686275bf434b4304408c2711832033e3906c50282eb93fc567b8483922625  numpy-2.3.0rc1.tar.gz
Links

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant
0