8000 GitHub - DA21S321D/PI-Light: code for π-Light (AAAI2024)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

DA21S321D/PI-Light

 
 

Repository files navigation

$\pi$-Light: Programmatic Interpretable Reinforcement Learning for Resource-Limited Traffic Signal Control AAAI 2024

code for $\pi$-Light.

Dependencies

  • python=3.8.10
  • torch=1.7.1+cu110
  • numpy=1.21.2
  • CityFlow=0.1.0

You need to install a modified version of CityFlow to run the code.

Then you need to unzip the data file.

Run $\pi$-Light

python 02_run_MCTS.py --dataset=Jinan

Evaluate generalization performance of $\pi$-Light

python 02_run_MCTS.py --dataset=Hangzhou1 --generalization=True target=Manhattan

Run Tinylight

python 00_run_tiny_light.py --dataset=Jinan

Run other baselines

python 01_run_baseline.py --dataset=Jinan

Evaluate generalization performance of other baselines

python 015_baseline_transfer.py --dataset=Jinan

Run VIPER

We also compare imitation learning-based VIPER, which distills the neural policy into a decision tree. We utilized MPLight as a teacher to generate state-action pairs for training the decision tree. Overall, VIPER's performance is close to that of MPlight.

python 03_run_viper.py

Acknowledgments

This codebase is based on TinyLight's code.

About

code for π-Light (AAAI2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0