duckspatial is an R package that simplifies the process of reading
and writing vector spatial data (e.g., sf
objects) in a
DuckDB database. This package is designed for
users working with geospatial data who want to leverage DuckDB’s fast
analytical capabilities while maintaining compatibility with R’s spatial
data ecosystem.
You can install the development version of duckspatial from GitHub with:
# install.packages("pak")
pak::pak("Cidree/duckspatial")
This is a basic example which shows how to set up DuckDB for spatial data manipulation, and how to write/read vector data.
library(duckdb)
#> Cargando paquete requerido: DBI
library(duckspatial)
library(sf)
#> Linking to GEOS 3.13.1, GDAL 3.10.2, PROJ 9.5.1; sf_use_s2() is TRUE
First, we create a connection with a DuckDB database (in this case in memory database), and we make sure that the spatial extension is installed, and we load it:
## create connection
conn <- dbConnect(duckdb())
## install and load spatial extension
ddbs_install(conn)
#> ℹ spatial extension version <2905968> is already installed in this database
ddbs_load(conn)
#> ✔ Spatial extension loaded
Now we can get some data to insert into the database. We are creating 10,000,000 random points.
## random word generator
random_word <- function(length = 5) {
paste0(sample(letters, length, replace = TRUE), collapse = "")
}
## create n points
n <- 10000000
random_points <- data.frame(
id = 1:n,
x = runif(n, min = -180, max = 180),
y = runif(n, min = -90, max = 90),
a = sample(1:1000000, size = n, replace = TRUE),
b = sample(replicate(10, random_word(7)), size = n, replace = TRUE),
c = sample(replicate(10, random_word(9)), size = n, replace = TRUE)
)
## convert to sf
sf_points <- st_as_sf(random_points, coords = c("x", "y"), crs = 4326)
## view first rows
head(sf_points)
#> Simple feature collection with 6 features and 4 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -123.6892 ymin: -81.28037 xmax: 161.5825 ymax: 42.83173
#> Geodetic CRS: WGS 84
#> id a b c geometry
#> 1 1 458064 svdtjpt fmuwkbvzb POINT (96.27221 42.83173)
#> 2 2 183934 kugswkz fmuwkbvzb POINT (-98.39448 -52.03544)
#> 3 3 101830 ewtbqed whwecpqsj POINT (-108.6723 -21.72314)
#> 4 4 471166 kugswkz myfcqkndt POINT (-123.6892 20.54316)
#> 5 5 672502 jxkzoyf xnrnbcigo POINT (-91.60747 -56.17601)
#> 6 6 108727 aupymig xamjuqius POINT (161.5825 -81.28037)
Now we can insert the data into the database using the
ddbs_write_vector()
function. We use the proc.time()
function to
calculate how long does it take, and we can compare it with writing a
shapefile with the write_sf()
function:
## write data monitoring processing time
start_time <- proc.time()
ddbs_write_vector(conn, sf_points, "test_points")
#> ✔ Table test_points successfully imported
end_time <- proc.time()
## print elapsed time
elapsed_duckdb <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_duckdb)
#> elapsed
#> 15.73
## write data monitoring processing time
start_time <- proc.time()
gpkg_file <- tempfile(fileext = ".gpkg")
write_sf(sf_points, gpkg_file)
end_time <- proc.time()
## print elapsed time
elapsed_gpkg <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_gpkg)
#> elapsed
#> 180.51
In this case, we can see that DuckDB was 11.5 times faster. Now we will do the same exercise but reading the data back into R:
## write data monitoring processing time
start_time <- proc.time()
sf_points_ddbs <- ddbs_read_vector(conn, "test_points")
#> ✔ Table test_points successfully imported.
end_time <- proc.time()
## print elapsed time
elapsed_duckdb <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_duckdb)
#> elapsed
#> 56.29
## write data monitoring processing time
start_time <- proc.time()
sf_points_ddbs <- read_sf(gpkg_file)
end_time <- proc.time()
## print elapsed time
elapsed_gpkg <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_gpkg)
#> elapsed
#> 50.7
For reading, we got similar results. Finally, don’t forget to disconnect from the database:
dbDisconnect(conn)