8000 Catherinesjkim (Catherine Kim) Β· GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
View Catherinesjkim's full-sized avatar
🎯
Focusing
🎯
Focusing

Highlights

  • Pro

Block or report Catherinesjkim

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
Catherinesjkim/README.md

Hola πŸ‘‹, I'm Catherine Kim!

πŸš€ Featured Projects

πŸ“¦ Spam Detector

Spam Detector

Machine learning model to classify SMS messages as 'spam' or 'ham' using text preprocessing, TF-IDF vectorization, and scikit-learn classifiers.

πŸ” Accuracy: 96% β€” overall strong classification performance

βœ… Precision: 1.00 β€” zero false positives; no legitimate messages flagged as spam

πŸ“‰ Recall: 0.72 β€” catches most spam but misses a few, ensuring cautious filtering

βš–οΈ F1 Score: 0.84 β€” well-balanced model with emphasis on precision

Why it matters: The model is optimized for high-precision scenarios, making it ideal for systems where false spam flags must be avoided, such as in business-critical communications.

➑️ View project: Spam Detector on GitHub β†’


🌦️ WeatherAQI

WeatherAQI

WeatherAQI is a Jupyter Notebook project that fetches and compares real-time weather and air quality (AQI) data for different cities using APIs and data visualization.

πŸ”§ Built with:

  • Python, Jupyter Notebook
  • OpenWeatherMap API
  • Seaborn, Matplotlib, Pandas
  • Optional: AQI API + BeautifulSoup

πŸ“Š Features:

  • πŸ”„ Live integration with OpenWeatherMap & AQI APIs
  • Auto-generated visual comparisons for multiple cities
  • Includes auto-labeled bar plots with units (Β°C, %, AQI)
  • πŸ—ƒοΈ Converts live CSV data to a local SQLite database (weather_aqi.db)
  • πŸ“₯ Supports SQL queries for filtering and historical analysis

πŸ”— View Project: WeatherAQI on GitHub β†’


πŸ€– AML Checker

🚧 my-aml-checker

A lightweight Python tool that detects potentially suspicious credit card transactions using rule-based AML (Anti-Money Laundering) checks.

  • 🚨 Flags high-value transactions and unusual activity
  • πŸ“Š Processes CSV files with clear, reviewable output
  • πŸ”§ Easily extendable for more compliance logic or machine learning

  • πŸ’» I'm currently working on automation for complex GRC and TPRM programs' change management and workflows with Gen AI and Python.

  • πŸ“š I'm learning Rego (OPA) to implement policy as code for IAM risk management and map different frameworks and regulations e.g. NIST, HIPAA, PCI DSS, etc. so that it's easier for software engineers to update change management and add it to their CI/CD pipeline.

  • πŸ™Œ I'm looking to collaborate on anything related to cybersecurity.

  • πŸ’ Ask me about GRC Compliance and TPRM program management with workflow and risk scoring methodology automation.

  • πŸ“ž How to reach me:

Twitter: catherinesjkim Linkedin: catherinesjkim GitHub Catherinesjkim


Languages and Tools:


Visual Studio Code

HTML5

CSS3

Sass

JavaScript

React

Node.js

SQL

MySQL

Git

GitHub

Terminal



Github Stats

Top Langs


Language Statistics...


A little more about me...

const cat = {
    pronouns: "She" | "Her" | "Hers",
    code: ["Javascript", "HTML", "CSS", "Python", "Ruby", "FEEL"],
    askMeAbout: ["web dev", "tech", "app dev", "startup", "baking"],
    technologies: {
        webApp: ["Python App"],
        frontEnd: {
            js: ["React", "Context"],
            python: ["FastAPI"]
            css: ["material ui", "ant design", "bootstrap", "Sass", "Less"]
        },
        backEnd: {
            js: ["node", "express"],
            python: ["flask"]
        },
        devOps: ["AWS", "Heroku", "Docker🐳", "K8"],
        databases: ["postgreSQL", "MySql", "sqlite"],
        misc: ["DMN", "selenium", "postman"]
    },
    architecture: ["serverless architecture", "progressive web applications", "single page applications", "microservices", "event-driven", "design system pattern"],
    techCommunities: {
                        member: "Py-Lambda",
                        member: "Women Techmakers",
                        member: "freeCodeCamp",
                       },
    currentProject: "I am building an interactive Github Dashboard and REST APIs with Flask and Python",
    funFact: "Let your code brew overnight and magic will happen the next morning"
};

I love connecting with people with different backgrounds so if you want to say hi, I'll be happy to meet you! 😊


Code Time

Profile Views

Lines of code

🐱 My GitHub Data

πŸ“¦ ? Used in GitHub's Storage

πŸ† 48 Contributions in the Year 2025

πŸ’Ό Opted to Hire

πŸ“œ 250 Public Repositories

πŸ”‘ 0 Private Repositories

I'm an Early 🐀

🌞 Morning                269 commits         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   34.75 % 
πŸŒ† Daytime                443 commits         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   57.24 % 
πŸŒƒ Evening                62 commits          β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   08.01 % 
πŸŒ™ Night                  0 commits           β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   00.00 % 

πŸ“… I'm Most Productive on Tuesday

Monday                   68 commits          β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   08.79 % 
Tuesday                  288 commits         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   37.21 % 
Wednesday                54 commits          β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   06.98 % 
Thursday                 73 commits          β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   09.43 % 
Friday                   143 commits         β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   18.48 % 
Saturday                 78 commits          β–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   10.08 % 
Sunday                   70 commits          β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   09.04 % 

πŸ“Š This Week I Spent My Time On

πŸ•‘οΈŽ Time Zone: America/Los_Angeles

πŸ’¬ Programming Languages: 
Other                    4 hrs 9 mins        β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   56.41 % 
Text                     2 hrs 40 mins       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   36.36 % 
Python                   31 mins             β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   07.24 % 

πŸ”₯ Editors: 
Terminal                 3 hrs 41 mins       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   50.14 % 
VS Code                  3 hrs 40 mins       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   49.86 % 

πŸ±β€πŸ’» Projects: 
PCAP                     3 hrs 38 mins       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   49.37 % 
endpoint-output          1 hr 58 mins        β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   26.88 % 
spam-detector            1 hr 39 mins        β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   22.42 % 
UpdateLogList            5 mins              β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   01.33 % 

πŸ’» Operating System: 
Mac                      7 hrs 22 mins       β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   100.00 % 

I Mostly Code in JavaScript

JavaScript               13 repos            β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   43.33 % 
HTML                     4 repos             β–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   13.33 % 
TypeScript               4 repos             β–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   13.33 % 
Jupyter Notebook         3 repos             β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   10.00 % 
Python                   2 repos             β–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘   06.67 % 

Timeline

Lines of Code chart

Last Updated on 04/07/2025 19:29:40 UTC

These Readme stats are generated using Github Action awesome-readme-stats

Pinned Loading

  1. Catherinesjkim Catherinesjkim Public

    1

  2. Cybersecurity-Portfolio Cybersecurity-Portfolio Public

    1

  3. my-aml-checker my-aml-checker Public

    A lightweight Python tool for detecting potentially suspicious transactions based on Anti-Money Laundering (AML) rules. Supports CSV input, rule-based flagging, and output of transactions for compl…

    Python 1

  4. WeatherAQI WeatherAQI Public

    A Jupyter Notebook project that compares real-time weather and air quality (AQI) data across cities using API integration and data visualization.

    Jupyter Notebook 1

  5. spam-detector spam-detector Public

    A machine learning project for detecting spam messages using Python. This notebook demonstrates end-to-end text classification with preprocessing, feature extraction using TF-IDF, and model trainin…

    Jupyter Notebook

0