8000 GitHub - BooleanlN/warp-ctc: Pytorch Bindings for warp-ctc
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

BooleanlN/warp-ctc

 
 

Repository files navigation

PyTorch bindings for Warp-ctc

Build Status

This is an extension onto the original repo found here.

CPU Performance

Benchmarked on a dual-socket machine with two Intel E5-2660 v4 processors - warp-ctc used 10 threads to maximally take advantage of the CPU resources.

T=150, L=40, A=28 warp-ctc
N=1 1.89 ms
N=16 4.40 ms
N=32 6.39 ms
N=64 10.77 ms
N=128 19.69 ms
T=150, L=20, A=5000 warp-ctc
N=1 10.22 ms
N=16 23.26 ms
N=32 44.70 ms
N=64 79.29 ms
N=128 146.83 ms

Installation

Install PyTorch.

WARP_CTC_PATH should be set to the location of a built WarpCTC (i.e. libwarpctc.so). This defaults to ../build, so from within a new warp-ctc clone you could build WarpCTC like this:

git clone https://github.com/SeanNaren/warp-ctc.git
cd warp-ctc
mkdir build; cd build
cmake ..
make

Otherwise, set WARP_CTC_PATH to wherever you have libwarpctc.so installed. If you have a GPU, you should also make sure that CUDA_HOME is set to the home cuda directory (i.e. where include/cuda.h and lib/libcudart.so live). For example:

export CUDA_HOME="/usr/local/cuda"

Now install the bindings:

cd pytorch_binding
python setup.py install

If you try the above and get a dlopen error on OSX with anaconda3 (as recommended by pytorch):

cd ../pytorch_binding
python setup.py install
cd ../build
cp libwarpctc.dylib /Users/$WHOAMI/anaconda3/lib

This will resolve the library not loaded error. This can be easily modified to work with other python installs if needed.

Example to use the bindings below.

    import torch
    from torch.autograd import Variable
    from warpctc_pytorch import CTCLoss
    ctc_loss = CTCLoss()
    # expected shape of seqLength x batchSize x alphabet_size
    probs = torch.FloatTensor([[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1]]]).transpose(0, 1).contiguous()
    labels = Variable(torch.IntTensor([1, 2]))
    label_sizes = Variable(torch.IntTensor([2]))
    probs_sizes = Variable(torch.IntTensor([2]))
    probs = Variable(probs, requires_grad=True) # tells autograd to compute gradients for probs
    cost = ctc_loss(probs, labels, probs_sizes, label_sizes)
    cost.backward()

Documentation

CTCLoss(size_average=False, length_average=False)
    # size_average (bool): normalize the loss by the batch size (default: False)
    # length_average (bool): normalize the loss by the total number of frames in the batch. If True, supersedes size_average (default: False)

forward(acts, labels, act_lens, label_lens)
    # acts: Tensor of (seqLength x batch x outputDim) containing output activations from network (before softmax)
    # labels: 1 dimensional Tensor containing all the targets of the batch in one large sequence
    # act_lens: Tensor of size (batch) containing size of each output sequence from the network
    # label_lens: Tensor of (batch) containing label length of each example

About

Pytorch Bindings for warp-ctc

Resources

License

Stars

Watchers

Forks

3F76

Packages

No packages published

Languages

  • Cuda 52.5%
  • C++ 33.8%
  • Python 10.6%
  • C 1.8%
  • CMake 1.3%
0