8000 GitHub - BCV-Uniandes/PLA-Net: Modeling Protein-Ligand Interactions with GraphConvolutional Networks for InterpretablePharmaceutical Discovery
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Modeling Protein-Ligand Interactions with GraphConvolutional Networks for InterpretablePharmaceutical Discovery

Notifications You must be signed in to change notification settings

BCV-Uniandes/PLA-Net

Repository files navigation

PLA-Net: Predicting Protein-Ligand Interactions with Graph Convolutional Networks for Interpretable Pharmaceutical Discovery

Paola Ruiz Puentes, Laura Rueda-Gensini, Natalia Valderrama, Isabela Hernández, Cristina González, Laura Daza, Carolina Muñoz-Camargo, Juan C. Cruz, Pablo Arbeláez

This repository contains the official implementation of PLA-Net: Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery.

Paper

Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery,
Paola Ruiz Puentes1,2, Laura Rueda-Gensini1,2, Natalia Valderrama1,2, Isabela Hernández1,2, Cristina González1,2, Laura Daza1,2, Carolina Muñoz-Camargo2, Juan C. Cruz2, Pablo Arbeláez1
Scientific Reports, 2022.

1 Center for Research and Formation in Artificial Intelligence .(CINFONIA), Universidad de los Andes, Bogotá 111711, Colombia.
2 Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia.

Installation

The following steps are required in order to run PLA-Net:

$ export PATH=/usr/local/cuda-11.0/bin:$PATH <br />
$ export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH <br />

$ conda create --name PLA-Net <br />
$ conda activate PLA-Net <br />

$ bash env.sh

Models

We provide trained models available for download in the following link.

Usage

To train each of the components of our method: LM, LM+Advs, LMPM and PLA-Net please refer to planet.sh file and run the desired models.

To evaluate each of the components of our method: LM, LM+Advs, LMPM and PLA-Net please run the corresponding bash file in the inference folder.

For docker installation you can use the setup in here.

Citation

We hope you find our paper useful. To cite us, please use the following BibTeX entry:

@article{ruiz2022predicting,
  title={Predicting target--ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery},
  author={Ruiz Puentes, Paola and Rueda-Gensini, Laura and Valderrama, Natalia and Hern{\'a}ndez, Isabela and Gonz{\'a}lez, Cristina and Daza, Laura and Mu{\~n}oz-Camargo, Carolina and Cruz, Juan C and Arbel{\'a}ez, Pablo},
  journal={Scientific reports},
  volume={12},
  number={1},
  pages={1--17},
  year={2022},
  publisher={Nature Publishing Group}
}
5BD0

About

Modeling Protein-Ligand Interactions with GraphConvolutional Networks for InterpretablePharmaceutical Discovery

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  
0